

PREPARED FOR:

BROWNFIELDS AND ENVIRONMENTAL RESTORATION PROGRAM DEPARTMENT OF TOXIC SUBSTANCES CONTROL 8800 CAL CENTER DRIVE SACRAMENTO, CALIFORNIA 95826

PREPARED BY:

GEOCON CONSULTANTS, INC. 3160 GOLD VALLEY DRIVE, SUITE 800 RANCHO CORDOVA, CALIFORNIA 95742

GEOTECHNICAL • ENVIRONMENTAL • MATERIAL

Project No. S9850-03-13B April 24, 2018

Duane White, PE Project Manager Brownfields and Environmental Restoration Program Department of Toxic Substances Control 8800 Cal Center Drive Sacramento, California 95826

Subject: DRAFT FINAL REMOVAL ACTION WORKPLAN

THE LANDING – OLD MILL SECTION

MT. SHASTA BOULEVARD AND LOVETA LANE

MT. SHASTA, CALIFORNIA

CONTRACT NO. 17-T4360, WORK ORDER NO. 1-360-1.0-102246

Dear Mr. White:

In accordance with the above-referenced contract and work order, we have prepared this Final Removal Action Workplan (RAW) for The Landing – Old Mill Section (the Site) located Mount Shasta Boulevard and Loveta Lane in Mt. Shasta, California. The Site is identified by Siskiyou County assessor's parcel number 067-010-010.

This RAW was prepared for the City of Mt. Shasta (the City) under a Targeted Site Investigation grant from the United States Environmental Protection Agency with oversight by the California Department of Toxic Substances Control. It was prepared pursuant to California Health and Safety Code Chapter 6.8, Sections 25323.1 and 25356.1, California Senate Bill 1706, and the *National Oil and Hazardous Substances Pollution Contingency Plan*.

The RAW describes the nature, source, and extent of contaminant impacts, presents an abbreviated human health risk assessment and ecological scoping assessment, an engineering evaluation and cost analysis for four removal action alternatives, and describes the applicable or relevant and appropriate requirements for implementation of the selected alternative.

We appreciate the opportunity to work with the DTSC on this project. Please call if you have any questions or would like to discuss any aspect of the RAW.

Sincerely,

GEOCON CONSULTANTS, INC.

Nicole Hastings-Bethel

Project Environmental Scientist

Jim Brake, PG Senior Geologist

IDENTIFICATION FORM

Document Title: Draft Final Removal Action Workplan

The Landing – Old Mill Section

Site Location: Mt. Shasta Boulevard and Loveta Lane, Mt. Shasta, California

Contract No.: 17-T4360

Work Order No.: 1-360-1.0-102246

Prepared by: Geocon Consultants, Inc.

3160 Gold Valley Drive, Suite 800 Rancho Cordova, California 95742

Ph: 916.852.9118

Geocon Project Number: S9850-03-13B

Geocon Project Manager: Nicole Hastings-Bethel

hastings-bethel@geoconinc.com

916.852.9118

Geocon Project Manager:

Approval: Date: April 24, 2018

Nicole Hastings-Bethel

Geocon Program Manager:

Approval: _____ Date: April 24, 2018

This document has been prepared for the California Environmental Protection Agency (CalEPA), Department of Toxic Substances Control (DTSC). The material herein is not to be disclosed to, discussed with, or made available to any person(s) for any reason without prior express approval of the appropriate responsible DTSC officer.

APPROVAL FORM

Document Title:	Draft Final Removal Action Workplan The Landing – Old Mill Section
Site Location:	Mt. Shasta Boulevard and Loveta Lane, Mt. Shasta, California
Contract No.:	17-T4360
Work Order No.:	1-360-1.0-102246
Prepared by:	Geocon Consultants, Inc. 3160 Gold Valley Drive, Suite 800 Rancho Cordova, California 95742 Ph: 916.852.9118
Geocon Project Number:	S9850-03-13B
Geocon Project Manager:	Nicole Hastings-Bethel hastings-bethel@geoconinc.com 916.852.9118
Geocon Project Manager:	
Approval: Nicole Hastings-	Date: <u>April 24, 2018</u>
DTSC Project Manager:	Duane White, PE
	Duane.White@dtsc.ca.gov 916.255.3585
Approval: Duane White, PE	Date: <u>April 24, 2018</u>

DISTRIBUTION LIST

Duane White, Project Manager (1 hard copy, e-copy)

California Environmental Protection Agency

Department of Toxic Substances Control

Bruce Pope, Project Director (1 hard copy, e-copy)

City of Mt. Shasta City Manager

Nicole Hastings-Bethel and Jim Brake, Project/Technical Managers (project file)

Geocon Consultants, Inc.

TABLE OF CONTENTS

DRA	FT FINA	AL REMOVAL ACTION WORKPLAN	PAGE
EXE	CUTIVE	E SUMMARY	i
1.0	INTE	RODUCTION	1
1.0	1.1	Site Description and Location	
	1.1	Project Description	
	1.3	Removal Action Objectives	
	1.4	Cleanup Standards	
2.0		•	
2.0	2.1	KGROUNDLocation, Description, and Identification	
	2.1	2.1.1 Name and Address	
		2.1.2 Owner's Contact Person, Mailing Address and Telephone Number	
		2.1.3 Environmental Consultant's Contact Information	
		2.1.4 CalSites Database Number	
		2.1.5 Assessor's Parcel Number(s) and Zoning	
		2.1.6 Ownership	
		2.1.7 Township, Range, Section and Meridian	
	2.2	Operational History and Status	
	2.3	Topography	
	2.4	Geology and Hydrogeology	
		2.4.1 Geology and Soil Types	
		2.4.2 Hydrogeologic Setting	6
	2.5	Surrounding Land Use and Sensitive Ecosystems	7
	2.6	Meteorology	
	2.7	Previous Investigations/Regulatory Involvement	
		2.7.1 Regulatory Inspections and Wood Pile Cleanup	
		2.7.2 1998 Targeted Site Assessment	
		2.7.3 2005 Targeted Site Assessment	
		2.7.4 2007 Targeted Site Investigation	
		2.7.5 2014 Phase II ESA	
		2.7.6 2014 Analysis of Brownfields Cleanup Alternatives2.7.7 2015 Targeted Site Investigation	
		2.7.8 2016 Groundwater Monitoring	
		2.7.9 2016 Targeted Brownfields Assessment - Phase I/II ESA	
		2.7.10 2016 Analysis of Brownfields Cleanup Alternatives	
		2.7.11 January 2018 Groundwater Monitoring	13
	2.8	Apparent Problem	
2.0		**	
3.0		CONCEPTUAL MODEL	
	3.1 3.2	Primary Source Media	
	3.2	Primary Release Mechanisms	
	3.3 3.4	Transport Mechanisms	
	3.4	Exposure Media and Exposure Routes	
	3.6	Potential Receptors	
	3.7	Areas of Concern	
4.0		KGROUND EVALUATION	
	4.1	Metals in Soil	
		4.1.1 Antimony	
		4.1.2 Arsenic	
		4.1.3 Barium	
		4.1.5 Cadmium	
		4.1.5 Cadillulli	10

TABLE OF CONTENTS (Continued)

		4.1.7	Cobalt	20
		4.1.8	Copper	20
		4.1.9	Lead	20
		4.1.10	Mercury	21
		4.1.11	Molybdenum	
		4.1.12	Nickel	
		4.1.13	Selenium	
			Silver	
			Thallium	
			Vanadium	
			Zinc	
	4.2		Hexavalent Chromium	
	4.2	Organi	cs and Inorganics in Groundwater	22
5.0	HUM	HUMAN HEALTH RISK ASSESSMENT		
	5.1	Exposu	re Pathways and Media of Concern	24
	5.2	Exposu	re Point Concentrations and Chemical Groups	24
	5.3	Constit	uents of Concern	24
	5.4	Exposu	re Parameters	25
		5.4.1	Residential Land Use	
		5.4.2	Industrial Land Use	
		5.4.3	Commercial Indoor Worker	
		5.4.4	Child and Adult Recreational Land Use	
		5.4.5	Construction Worker	
	5.5		y Values	
	5.6		haracterization	
	5.0	5.6.1	Soil and Air	
		5.6.2	Water	
	5.7		ary of Results	
	3.1	5.7.1	Residential Land Use	
		5.7.1	Industrial Land Use	
		5.7.3	Commercial Indoor Worker	
			Child and Adult Recreational Use	
		5.7.4		
		5.7.5	Construction Worker	
	7 0	5.7.6	Residential Groundwater Use	
	5.8		lazard Assessment	
	5.9		ainty Analysis	
		5.9.1	Sampling Uncertainty	
		5.9.2	Model Uncertainty	
		5.9.3	Laboratory Methods and Detection Limits	
		5.9.4	Toxicity Values	
	5.10	Conclu	sions	
		5.10.1	Unrestricted Land Use	35
		5.10.2	Proposed Future Commercial/Industrial and Recreational Land Use	35
		5.10.3	Potential Hot Spots	35
		5.10.4	Residential Groundwater Use	36
6.0	ECOI	OGICAI	_ RISK Assessment	27
0.0	6.1			
	0.1	6.1.1	Site Characterization	
		6.1.1	Biological Characterization.	
		6.1.3	Pathway Assessment	
			· · · · · · · · · · · · · · · · · · ·	
	6.2	6.1.4 Conclu	Findings of Ecological Scoping Assessment	41
	11 /	1 ()[[(']]]	NUUN	41/

TABLE OF CONTENTS (Continued)

7.0	ENGINEERING EVALUATION/COST ANALYSIS			
	7.1	Removal Action Alternatives	43	
	7.2	Evaluation of Removal Action Alternatives	43	
		7.2.1 Overall Protection of Human Health and the Environment	44	
		7.2.2 Compliance with State and Federal Requirements	45	
		7.2.3 Long-term Effectiveness and Performance	45	
		7.2.4 Reduction of Toxicity, Mobility, and Volume		
		7.2.5 Short-term Effectiveness		
		7.2.6 Implementability		
		7.2.7 Cost	48	
		7.2.8 Regulatory Acceptance	49	
		7.2.9 Community Acceptance		
	7.3	Results of Removal Action Evaluation		
	7.4	Recommended Remedy		
0.0		•		
8.0		GATION MEASURES		
	8.1	Remedial Design Implementation Plan		
	8.2	Excavating Impacted Soil		
	8.3	Offsite Disposal of Impacted Soil		
	8.4	Backfill Material		
	8.5	Hardscape and Structures		
	8.6	Landscaping		
	8.7	Utilities		
	8.8	Removal Action Completion Report		
	8.9	LUC	54	
9.0	APPLI	CABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS	56	
7. 0	9.1	Summary of Applicable State and Federal ARARs		
	9.2	ARARs for Soil Excavation and Offsite Disposal		
	9.2.1	Public Participation		
	9.2.2	California Environmental Quality Act (CEQA)		
	9.2.3	Notifications for Property Transfers		
	9.2.4	Hazardous Waste Management		
	9.2.5	Siskiyou County Air Pollution Control District		
	9.2.6	Health and Safety Plan		
	9.2.7	Contractor's Licensing and Certification Requirements		
	9.2.7	Storm Water Pollution Prevention Plan		
	9.2.9	Soil Transportation Plan		
	9.2.9			
10.0	REMOVAL ACTION IMPLEMENTATION			
	10.1	Scoping Meeting	60	
	10.2	Permits	60	
	10.3	Work Area Preparation	60	
	10.4	Excavation Methodology	60	
	10.4.1	Decontamination Area	61	
	10.4.2	Soil Staging and Storage Operations	61	
	10.4.3			
	10.5	Field Documentation		
	10.6	Waste Profile and Confirmation Soil Sampling and Analysis	63	
	10.6.1	Waste Profile Samples		
	10.6.2	•		
	10.7	Airborne Dust Control and Air Monitoring		
11.0	COLO	MUNITY PROFILE	65	
$\Pi \Pi \Pi$	(() () () ()	VIUINII I PKUPILE	กา	

TABLE OF CONTENTS (Continued)

	11.1	Domographics	65	
	11.1 11.2	Demographics Local Awareness and Interest		
	11.2	Key Contacts		
	11.4	Key Issues and Concerns		
	11.5	Recommended Public Participation		
12.0	PR∩II	ECT SCHEDULE AND REPORT OF COMPLETION		
12.0	12.1	Project Schedule		
	12.2	Report of Completion.		
13.0	LIMIT	ΓΑΤΙΟΝS	68	
14.0	REFE	RENCES	69	
1	11212			
FIGU	RES			
1.	Vicinity	y Map		
2.	Site Pla	un .		
3.	Ground	lwater Elevation Map and Chemicals of Concern – January 2018		
4-1.	Norther	rn Area – DRO and ORO Concentrations in Soil		
4-2.	Norther	rn Area – PCP Concentrations in Soil		
5-1.		rn Area – DRO and ORO Concentrations in Soil		
5-2.		rn Area – Dioxin Concentrations in Soil		
6.		nceptual Model		
7.	Ecological Site Conceptual Model			
TABI	LES			
1.	Summa	ary of Petroleum Hydrocarbons and Pentachlorophenol in Soil		
2.	Summa	ary of Petroleum Hydrocarbons and Pentachlorophenol in Groundwater and Surface	ce Water	
3.		ry of Dioxins in Soil		
4.		ry of Dioxins in Groundwater		
5.		ry of Metals in Soil		
6.		ry of Metals in Groundwater and Surface Water		
7.		ring Well Information		
8.		pordinates – Sample Locations and Wells		
9.		iation Cost Estimate Summary – Alternative No. 2		
10.		iation Cost Estimate Summary – Alternative No. 3		
11.	Remed	iation Cost Estimate Summary – Alternative No. 4		
		~		

APPENDICES

- Laboratory Reports Well Data Sheets A.
- B.
- C. Statistical Data
- D. Risk Assessment Data
- E.
- Leadspead Data Biological Resources Data F.

DRAFT FINAL REMOVAL ACTION WORKPLAN THE LANDING – OLD MILL SECTION MT. SHASTA BOULEVARD AND LOVETA LANE MT. SHASTA, CALIFORNIA

LIST OF ACRONYMS AND ABBREVIATIONS

ALM	Adult Lead Model
APN	assessor's parcel number
ARAR	applicable or relevant and appropriate requirement
BTV	background threshold value
CDMG	California Division of Mines and Geology
Cal-EPA	California Environmental Protection Agency
Cal-OSHA	California Occupational Safety and Health Administration
CEQA	California Environmental Quality Act
CCR	California Code of Regulations
CERCLA	Comprehensive Environmental Response, Compensation, and
	Liability Act
CFR	Code of Federal Regulations
CNDDB	California Natural Diversity Database
cm ²	square centimeter
COC	contaminant of concern
COPEC	chemical of potential ecological concern
CVRWQCB	Central Valley Regional Water Quality Control Board
DRO	diesel-range organics
DTSC	Department of Toxic Substances Control
DTSC-SL	DTSC Screening Level – HERO Note 3
ED	exposure duration
EE/CA	engineering evaluation/cost analysis
Ecorp	Ecorp Consulting, Inc.
ECO-SSL	ecological soil screening levels
EF	exposure frequency
EIR	Environmental Impact Report
EPC	exposure point concentration
ET	exposure time
HI	hazard index
H&K	Holdrege and Kull
HERO	Human and Ecological Risk Office
HHRA	human health risk assessment
HQ	hazard quotient
IUR	inhalation unit risk
kg	kilogram
KM	Kaplan Meier
LUC	land use covenant
μg/dl	micrograms per deciliter
μg/l	micrograms per liter
M&E	Metcalf and Eddy
mg/day	milligrams per day
mg/kg	milligrams per kilogram

LIST OF ACRONYMS (continued)

mg/l	milligrams per liter
mg/cm ²	milligrams per square centimeter
m ³ /day	cubic meters per day
m ³ /day	cubic meters per kilogram
MSL	mean sea level
ng/kg	nanograms per kilogram
ОЕННА	Office of Environmental Health Hazard Assessment
O&M	operations and maintenance
OSHA	Federal Occupational Safety and Health Administration
ORO	oil-range organics
PAH	polyaromatic hydrocarbons
PAL	project action level
PCP	pentachlorophenol
PEF	particulate emission factor
PG	Professional Geologist
pg/l	picograms per liter
PQL	practical quantitation limit
RAO	removal action objective
RAW	Removal Action Workplan
RACR	Removal Action Completion Report
RfC	reference concentration
RfD_o	reference dose
RME	reasonable maximum exposure
RSL	Regional Screening Level
SCM	Site Conceptual Model
SFBRWQCB	San Francisco Bay Regional Water Quality Control Board
SF_o	slope factor
SWPPP	stormwater pollution prevention program
START	Superfund Technical Assessment and Response Team
TEQ	total 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity equivalency
TSA	targeted site assessment
TSI	targeted site investigation
TTLC	Total Threshold Limit Concentration
UCL	upper confidence limit
UPL	upper production limit
USEPA	United States Environmental Protection Agency
VCA	Voluntary Cleanup Agreement
VOC	volatile organic compound
WMW	Wilcoxon-Mann-Whitney

EXECUTIVE SUMMARY

Geocon Consultants, Inc. prepared this Draft Final Removal Action Workplan (RAW) to address soil impacted by contaminants of concern (COC) at The Landing – Old Mill Section (the Site) in Mt. Shasta, California (Figure 1). The RAW was performed for the City of Mt. Shasta (the City) under a Targeted Site Investigation (TSI) grant from the United States Environmental Protection Agency (USEPA) with oversight by the California Department of Toxic Substances Control (DTSC).

The purpose of the RAW was to assemble existing data from previous investigations to describe the extent of COC impacts from the historical use of the Site as a lumber mill, assess the risk posed by the COCs to human health and the environment, evaluate removal alternatives and select the most appropriate one to mitigate that risk and ready the Site for redevelopment, and comply with provision of the Health and Safety Code Sections 25323.1 and 25356.1. This Draft Final RAW presents an abbreviated human health risk assessment (HHRA) and ecological scoping assessment, an engineering evaluation and cost analysis (EE/CA) for four removal action alternatives, and applicable or relevant and appropriate requirements (ARAR) for the selected alternative. The mitigation measures set forth in this RAW will be implemented in general accordance with the California Health and Safety Code Chapter 6.8, Sections 25323.1 and 25356.1, the Code of Federal Regulations (CFR) Title 40 - Protection of the Environment Part 300 National Oil and Hazardous Substances Pollution Contingency Plan (NCP), and the DTSC Memorandum: Removal Action Workplans, dated September 23, 1998, unless otherwise noted. This document is the equivalent to an EE/CA as required under section 300.415(b)(4)(i) of the NCP for all non-time critical removal actions.

The approximately 20-acre site is located west of the intersection of South Mt. Shasta Boulevard and Loveta Lane in Mt. Shasta City, California (Figure 2). There is no physical address associated with the Site. The Site was first developed by the Pioneer Box Company in 1900. Lumber mill operations were reportedly conducted at the Site by several parties, most recently Roseburg Forest Products from 1900 until the late 1960s when operations were moved south to the "New Mill" (URS, 2007). The Site was deeded to the City in 1989. At the time of the property transfer, all of the former mill structures at the Site had been removed and the log pond had been filled with lumber scrap debris. Remnants of former structures are present in the form of concrete pads and foundations, but much of the Site is covered in dense vegetation. The City is planning to use the Site for open space in the form of a park and light commercial use.

Historical mill operations at the Site included the use of a dip tank, where lumber was treated with pentachlorophenol (PCP) then placed into an adjacent transfer pit, a boiler room, refuse burner, and a log pond (Figure 2). These four operational areas constitute the four areas of concern with respect to contaminant impacts at the Site.

Soil and groundwater investigations were conducted at the Site between 1998 and 2016 and the data generated is the basis for this RAW. Additionally, in January 2018, we conducted a round of groundwater monitoring at the Site the data from which is also included.

Cleanup standards include applicable DTSC Human and Ecological Risk Office (HERO) note screening levels, the USEPA Regional Screening Levels (RSLs), and the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB) Environmental Screening Levels (ESLs) as summarized on Tables 1 through 6. The following project action levels (PALs) were developed for the COCs at the Site based on these standards, the City's proposed future redevelopment plan for recreational and commercial/industrial use, and in consultation with the DTSC:

- dioxins/furans (as Toxic Equivalency (TEQ) values relative to total 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]) 220 700 nanograms per kilogram (ng/kg), DTSC, HERO Note 2;
- PCP 4 milligrams per kilogram (mg/kg) USEPA RSL, commercial/industrial;
- DRO 570 mg/kg SFBRWQCB ESL, soil leaching to groundwater; and
- ORO 5,100 mg/kg SFBRWQCB ESL, gross contamination.

Investigation at the Site has identified COCs in soil resulting from former industrial (lumber mill) land use, including PCP from wood treatment, petroleum products (diesel fuel and motor oil) from onsite equipment operation, and dioxins from incineration of wood waste. PCP and petroleum hydrocarbons are present in soil on the Site at concentrations exceeding their respective PALs. Dioxins are present in soil on the Site at concentrations that exceed established health risk-based screening levels for residential use; however, the Site is not planned for residential use. Therefore, dioxins are only considered part of the apparent problem for unrestricted use of the Site.

We performed an HHRA in general accordance with guidelines in DTSC's HHRA guidance. Exposure pathways are incidental ingestion and dermal contact with the affected soil, inhalation of particulates and volatile compounds originating from the affected soil, ingestion and dermal contact with affected groundwater, and inhalation of volatile compounds originating from affected groundwater. For all assessment areas, the chronic health hazard index (hazard, or HI) exceeds one, and the lifetime excess cancer risk (risk) exceeds one per million. Therefore, the Site is not considered suitable for unrestricted land use in its present (baseline) condition.

All assessment areas except Area 2 (Dip Tank and Transfer Pit) generally appear to be acceptable for use under the other exposure scenarios evaluated, including industrial, indoor commercial, recreational and construction worker. Without hot spot removal, the DRO and PCP concentrations in soil at Area 2 are generally not suitable for use under the exposure scenarios evaluated in this assessment. The DRO and PCP concentrations in soil at Area 2 require specific handling protocol for construction worker protection, including dust control and hazard communication.

Groundwater exposure is not likely for onsite receptors because the Site is located in an area served by treated municipal drinking water. However, groundwater is considered a medium of concern because drinking water is a potential beneficial use of groundwater. Based on the assessment presented herein, the groundwater obtained from the monitoring wells at the Site is not suitable for residential use.

We performed an Ecological Scoping Assessment in general accordance with guidelines in DTSC's Ecological Scoping Assessment guidance. Potentially complete exposure pathways exist for terrestrial receptors for mercury and PCP hot spots in soil in Area 2. Therefore, it is appropriate to consider hot spot removal and off-site disposal to mitigate the potential ecological exposures. The potential for future ecological exposure to chemicals of potential ecological concern (COPECs) in Area 2 is dependent upon the nature of future site development. If the assessment area is to support commercial/industrial development, habitat may not be present to support complete ecological exposure pathways. If the site remains open space or is developed as recreational open space, then the potential for ecological exposure may exist.

The EE/CA evaluates removal actions for effectiveness, cost, and implementability. We evaluated four alternatives in the EE/CA section of the RAW. The alternatives were evaluated based on the proposed land use for the Site of recreational and commercial/industrial. The most effective alternative selected is Alternative No. 3 - excavation of PCP- and petroleum-impacted soil to levels acceptable for commercial/industrial land use and offsite disposal of the soil. This alternative would remove approximately 374 cubic yards of contaminated soil from approximately 3,810 square feet of the Site, to a maximum depth of 8 feet, providing protection of human health and the environment by eliminating the routes of exposure to future recreational and commercial/industrial site users and ecological receptors. Dioxin-impacted soil would require no further action if the future land use remains recreational and/or commercial/industrial. Alternative No. 3 can be performed in compliance with State and Federal requirements. Short-term exposure to construction personnel and offsite neighbors can be minimized through the implementation of dust controls (e.g., water spray of disturbed areas). Administrative control of land use through a land use covenant (LUC). A Soil Management Plan for the Site would ensure reliable protection of human health on a long-term basis.

There will be a 30-day public comment period to allow the public to review the Draft Final RAW and provide comments. Fact sheets will be mailed to the community notifying them of the comment period and a display advertisement will appear in the local newspaper announcing the comment period. Following the public comment period, DTSC will respond to comments in a Responsiveness Summary. The DTSC will then either approve the RAW as final or modify it in response to comments.

DRAFT FINAL REMOVAL ACTION WORKPLAN

1.0 INTRODUCTION

Geocon Consultants, Inc. prepared this Draft Final Removal Action Workplan (RAW) to address soil impacted by contaminants of concern (COC) at The Landing – Old Mill Section (the Site) located at Mount Shasta Boulevard and Loveta Lane in Mt. Shasta, California (Figure 1). The RAW was performed for the City of Mt. Shasta (the City) under a Targeted Site Investigation (TSI) grant from the United States Environmental Protection Agency (USEPA) with oversight by the California Department of Toxic Substances Control (DTSC).

The purpose of the RAW was to assemble existing data from previous investigations to describe the extent of COC impacts at the Site related to the historical use of the Site as a lumber mill, assess the risk posed by the COCs to human health and the environment, and to evaluate removal alternatives and select the most appropriate one to mitigate that risk and ready the Site for redevelopment. We understand that the most likely future use of the portion of the Site where lumber mill features existed (Figure 2) is open space as a community park and commercial use.

This Draft Final RAW presents an abbreviated human health risk assessment (HHRA) and ecological scoping assessment, an engineering evaluation and cost analysis (EE/CA) for four removal action alternatives, and applicable or relevant and appropriate requirements (ARAR) for the selected alternative. The mitigation measures set forth in this RAW will be conducted in general accordance with the California Health and Safety Code Chapter 6.8, Sections 25323.1 and 25356.1, the Code of Federal Regulations (CFR) Title 40 - Protection of the Environment Part 300 National Oil and Hazardous Substances Pollution Contingency Plan (NCP), and the DTSC Memorandum: Removal Action Workplans, dated September 23, 1998, unless otherwise noted. This document is the equivalent to an EE/CA as required under section 300.415(b)(4)(i) of the NCP for all non-time critical removal actions.

1.1 Site Description and Location

The Site (latitude 41.300902°, longitude -122.307331°) is part of 127 acres owned by the City of Mt. Shasta now known for the purposes of marketing it for future development as The Landing. The Landing has been divided into smaller sections based on historical use. The Site is approximately 20 acres and is the location of the original lumber mill (Old Mill) operated since 1900.

The Site and the rest of the surrounding City-owned property (adjacent to the south) is vacant. A Union Pacific Railroad Company mainline track is adjacent to the west of the Site, beyond which is residential use and vacant land. Residential and commercial uses are adjacent to the north of the Site. Mt. Shasta Boulevard is adjacent to the east of the Site beyond which are commercial uses.

Weather conditions in the area are generally warm in the summer season with high temperatures in the 80s, and cold and wet winter season with low temperatures in the 20s. Annual average precipitation as rain and snow is approximately 40 and 103 inches per year, respectively. The prevailing wind in Mt. Shasta varies by season and is summarized further in Section 2.6.

1.2 Project Description

The City intends to redevelop the Site and surrounding area with uses that promote the historical, recreational, and tourism aspects of the City and Mt. Shasta region. The Site is currently in a Planned Unit Development area. According to the *Land Use Plan for the Roseburg Commerce Park, City of Mount Shasta*, dated August 2016, open space in the form of a park is planned for the northern, approximately 13.5-acre portion of the Site, which includes former lumber mill features such as the log pond, former refuse burner, boiler room, and dip tank. The approximately 6.5-acre southern portion of the Site is planned for light commercial use. The source of potable water for the Site will be from the City of Mt. Shasta municipal water system and not from groundwater.

1.3 Removal Action Objectives

Removal Action Objectives (RAO) are developed to mitigate impacts to human health and the environment due to a planned disturbance. Removal actions are subject to a different set of regulatory requirements than "remedial" actions. Therefore the term "removal" is used throughout this RAW in reference to the measures taken to mitigate potential exposure to COCs at the Site.

The COCs include dioxin, pentachlorophenol (PCP), diesel-range organics (DRO), and oil-range organics (ORO) that are present at elevated concentrations in shallow soil on the Site. Therefore, the RAOs detailed in this RAW are to:

- minimize the potential for site user exposure to COCs in shallow soil;
- minimize the spread of impacted material to adjacent properties;
- facilitate site re-development for recreation and commercial/light industrial uses;
- maximize confidence in the success of the remedial action(s);
- minimize long-term liability resulting from the remedial action(s);
- maximize public acceptance of actions to be taken;
- minimize the cost of remedial actions; and
- protect the beneficial uses of the groundwater and mitigate existing groundwater impacts.

1.4 Cleanup Standards

Cleanup standards include applicable DTSC HHRA screening levels, the USEPA Regional Screening Levels (RSLs), and the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB)

Environmental Screening Levels (ESLs) as summarized on Tables 1 through 6. The following project action levels (PALs) were developed for the primary COCs at the Site based on these standards, the City's proposed future redevelopment plan as recreational and commercial/industrial use, and in consultation with the DTSC:

- dioxins/furans (as Toxic Equivalency (TEQ) value relative to total 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]) 220 700 nanograms per kilogram (ng/kg) DTSC, HHRA Note 2;
- PCP 4 milligrams per kilogram (mg/kg) USEPA RSL, commercial/industrial;
- DRO 570 mg/kg SFBRWQCB ESL, soil leaching to groundwater; and
- ORO 5,100 mg/kg SFBRWQCB ESL, gross contamination.

The primary routes of exposure to COCs in soil on the Site are through incidental inhalation, ingestion, and dermal contact. Further discussion of COCs, exposure routes, and risk-based PALs is provided in Section 5.0.

We evaluated four removal action alternatives with regards to the nine criteria defined in 40 CFR 300.430, as summarized in Section 7.2. The proposed remedy will remediate the Site to levels that are safe for commercial/industrial use and that will accommodate recreation/open space with an approved Soil Management Plan.

2.0 BACKGROUND

This section describes the site location and physical characteristics including geology and hydrogeology of the Site and summarizes the findings of previous investigations.

2.1 Location, Description, and Identification

The Site is located west of the intersection of South Mt. Shasta Boulevard and Loveta Lane in Mt. Shasta City, California (Figure 2). There is no physical address associated with the Site. The Site is in the southern portion of the City within a commercially and residentially developed area.

The Site is approximately 1,800 feet long in the north-south direction and 500 to 750 feet wide in the east-west direction. A former log pond occupies the northern portion of the Site, and the base of the pond is approximately 10 feet below the surrounding grade of the Site. An intermittent stream, locally referred to as Mill Creek, that originates offsite to the east, enters the Site through a culvert beneath South Mt. Shasta Boulevard, flows west through the former log pond, and exits through a culvert at the western edge of the pond (Figure 2).

Structures associated with historical mill operations have been removed, and the Site is currently vacant. Remnants of former structures are present in the form of concrete pads and foundations, but much of the Site is covered in dense vegetation (Figure 2).

2.1.1 Name and Address

Name: The Landing – Old Mill Section

Address: no physical address, South Mt. Shasta Boulevard, Mt. Shasta, California

2.1.2 Owner's Contact Person, Mailing Address and Telephone Number

Contact Person: Bruce Pope, City Manager

Mailing Address: City of Mt. Shasta

305 North Mt. Shasta Boulevard

Mt. Shasta, CA 96067

Telephone Number: 530.926.7510

2.1.3 Environmental Consultant's Contact Information

The environmental consultant's contact person, mailing address and telephone number are as follows:

Contact Person: Jim Brake, PG

Mailing Address: Geocon Consultants, Inc.

3160 Gold Valley Drive, Suite 800 Rancho Cordova, California 95742

Telephone Number: 916.852.9118

2.1.4 CalSites Database Number

Envirostor ID: 60002107

Site Code: 102246

2.1.5 Assessor's Parcel Number(s) and Zoning

APN: 067-010-010

Acreage: 20.81 acres

Land Use and Zoning: Planned Development (PUD)

2.1.6 Ownership

The current Site owner is City of Mt. Shasta.

2.1.7 Township, Range, Section and Meridian

The Site is located in the northeastern quarter of Section 21, Township 40 North, Range 4 West of the Mount Diablo Base and Meridian.

2.2 Operational History and Status

The Site was first developed by the Pioneer Box Company in 1900. Lumber mill operations were reportedly conducted by several parties, most recently Roseburg Forest Products, at the Site from 1900 until the late 1960s when operations were moved south to the "New Mill" (URS, 2007). Historical mill operations at the Site included the use of a dip tank, where lumber was treated with PCP then placed into an adjacent transfer pit, a boiler room, refuse burner, and a log pond (Figure 2). These four operational areas constitute the four areas of concern with respect to contaminant impacts at the Site.

According to the former City Manager, Ted Marconi, the Site was deeded to the City in 1989. At the time of the property transfer, all of the former mill structures at the Site had been removed and the log pond had been filled with lumber scrap debris. During future inspections and assessment, the debris was referred to locally as the "wood pile" (Marconi, 2013).

2.3 Topography

The Site lies at an elevation of approximately 3,500 feet above mean sea level (MSL - USGS, 2012) and was graded (filled) to be predominantly flat-lying with a gentle slope to the west. A former log pond occupies the northern portion of the Site, and the base of the pond is approximately 10 feet below the surrounding grade of the Site.

2.4 Geology and Hydrogeology

2.4.1 Geology and Soil Types

The Site is within the Cascade Range geomorphic province of Northern California, and is located approximately 10 miles southwest of the summit of Mount Shasta, a composite volcano in the southern Cascade Range. The southern Cascade Range is flanked by the Modoc Plateau to the east, the Sierra Nevada and Great Valley to the south, and the Klamath Mountains to the West. Regional geologic conditions consist of volcanic layers, colluvial, alluvial, and talus deposits, and lesser glacially-derived materials. The Geologic Map of Weed Quadrangle (California Division of Mines and Geology [CDMG], 1987) indicates that the Site is underlain by volcanic rocks and glacial deposits.

During our previous field investigations at the Site, we encountered moist, silty sand fill with occasional charcoal and wood fragments from 0 to 3.5 feet, decomposing wood debris with occasional charcoal, gravel, and brick fragments to depths of up to 6 feet. Native soil consisting of weathered volcanic deposits of silty sand and medium-grained sand with occasional lenses of coarse sand and gravel underlies the fill material to the maximum depth explored of 16 feet.

2.4.2 Hydrogeologic Setting

The Site is located in the Upper Sacramento River Watershed. Surface water on the Site consists of Mill Creek that flows through, and seasonal standing water in, the former log pond in the northern portion of the Site. During site visits in May and September 2013, March 2015, and January 2018, we observed water flowing in this stream and shallow standing water (marsh-like conditions) in the central portion of the former log pond. The topographic map depicts an unnamed, east-west-oriented, perennial drainage course across the central portion of the Site that drains into Cold Creek approximately one mile southwest of the Site. Cold Creek flows into Lake Siskiyou, which is a reservoir on the Sacramento River.

In 2015 we installed five groundwater monitoring wells (OM-1 through OM-5) at the Site (Figure 2). These wells were monitored most recently in January 2018. Depth to groundwater ranged from 6.24 feet in OM-4 to 20.31 feet in OM-5, and groundwater flow was estimated to be to the southwest at an average gradient of 0.04 ft/ft, consistent with previous year monitoring events (Figure 3). Well construction details and groundwater elevation data from January 2018 is presented in Table 7.

The Central Valley Regional Water Quality Control Board (CVRWQCB) Water Quality Control Plan for the Sacramento River and San Joaquin River Basins indicates that groundwater in the site vicinity has existing beneficial uses for municipal and domestic supply (CVRWQCB, 2011). However, the source of potable water for future site use will be from the City of Mt. Shasta municipal water system and not from groundwater beneath the Site.

2.5 Surrounding Land Use and Sensitive Ecosystems

Land surrounding the Site is used for commercial/light industrial purposes and residential use. Single-family residential properties are adjacent to the north of the Site. Commercial uses are present along the eastern side of Mt. Shasta Boulevard, east of the Site, beyond which are primarily single-family residences. Single-family residences are also present beyond the railroad tracks west of the Site. The nearest daycare/school is "I AM" School, Inc. located at 118 Siskiyou Ave, approximately 1,300 feet northwest of the Site.

Sensitive ecosystems on and around the Site were identified in a biological survey performed by North State Resources in 1998. The survey was included as part of Pacific Municipal Consultants' *Draft Environmental Impact Report* (EIR) for the Roseburg Commerce Park, which included the Site. A complex of fresh emergent wetland/montane riparian vegetation was identified in the Log Pond Area, which includes a perennial stream and several springs and seeps. Vegetation was described as a moderate to dense network of emergent wetland and riparian species. Otherwise, the central and southern portions of the Site are dominated by disturbed areas resulting from former mill operations. Vegetation within these areas is described as a combination of trees, shrubs, and grasses and forbs.

2.6 Meteorology

Mt. Shasta climate is categorized as California Energy Commission climate zone 16 and is within the area known as the Northeast Plateau Air Basin. Weather conditions in the area are generally warm in the summer season with high temperatures in the 80s, and cold and wet winter season with temperatures in low 20s. An annual average of precipitation and snow is approximately 40 and 103 inches per year, respectively.

The prevailing wind in Mt. Shasta varies. Based on data collected between January 1979 and June 2017, prevailing wind is generally from the northwest or southeast at an average speed of 3.8 miles per hour (mph). In January, February, and March, the prevailing wind is generally from the southeast at an average speed of 3.9 mph. In April, May, and June, the prevailing wind is generally from the northwest at an average speed of 4.3 mph. In August and September, the prevailing wind is generally from the northeast at an average speed of 3.1 mph. In July, October, November, and December the prevailing wind varied from northwest, northeast, to southeast (Iowa State University, 2018).

2.7 Previous Investigations/Regulatory Involvement

Previous environmental investigations conducted at the Site involving regulatory oversight are summarized in the following subsections. GPS coordinates of sample locations and wells, as provided from these previous investigations, is compiled and summarized in Table 8. Laboratory analysis results for COCs in soil, groundwater, and surface water are summarized in Tables 1 through 6. Analysis results for soil only are presented for the northern area on Figures 4-1 and 4-2 and the southern area on Figures 5-1 and 5-2.

2.7.1 Regulatory Inspections and Wood Pile Cleanup

Reports of previous investigations at the Site indicate that the CVRWQCB periodically conducted inspections at the Site from 1964 to 1995 to observe and document waste discharging practices (Ecology and Environment [E&E], 2005, and URS, 2007). During an initial site inspection in 1964, the CVRWQCB noted that PCP was used in the dip tank at the Site and that the tank was cleaned three times per year by discharging the liquid to the ground. They also noted that the log pond was full of water, used to store logs, and continuously drained to an offsite drainage west of the Site. In subsequent inspections reports, the CVRWQCB noted that by 1974, the log pond was void of water and the wood pile referenced in Section 2.2 occupied the pond.

In 1988, at the direction of the CVRWQCB, Steffen, Robertson and Kirsten installed three groundwater monitoring wells in the vicinity of the wood pile. One well was installed upgradient (east) of the pile, and two downgradient (west). Reportedly, the depth to water in the wells was less than 10 feet. Groundwater samples were collected on a quarterly basis until at least 1993 and analyzed for metals and phenols (including PCP). PCP was reportedly not detected in the samples and detected metals appeared to be consistent with local background concentrations.

In 1991, the City retained Metcalf and Eddy (M&E) to develop a mitigation plan for the wood pile. M&E collected three surface debris samples from the pile and submitted them for analysis of gasoline-range organics (GRO), benzene, toluene, ethylbenzene, total xylenes (BTEX), oil and grease, and phenols (including PCP). GRO was detected in the samples at concentrations up to 57 mg/kg, PCP up to 0.059 mg/kg, and oil and grease up to 580 mg/kg. BTEX was not detected. The City subsequently arranged for the wood pile to be transported offsite for use as daily cover material at a local landfill.

The CVRWQCB issued a letter in October 1995 indicating that the wood pile removal was nearly complete and that further mitigation regarding the wood pile was not required. According to former City Manager Mr. Marconi, the three monitoring wells installed in 1988 were subsequently destroyed (Marconi, 2013).

2.7.2 1998 Targeted Site Assessment

The USEPA conducted a Targeted Site Assessment (TSA) at the Site in 1998 under their Regional Brownfields Program (E&E, 1998). The assessment was conducted by E&E's Superfund Technical Assessment and Response Team (START) on behalf of the USEPA. The assessment focused on areas of historical lumber mill operations and included soil, sediment, surface water, and groundwater sampling and laboratory analysis. Samples were analyzed for petroleum hydrocarbons, volatile organic compounds (VOC), polynuclear aromatic hydrocarbons (PAHs) including PCP, dioxins/furans, and metals. VOCs were not detected in any of the samples analyzed. Laboratory analysis results showed the following areas of the Site had been impacted by historical operations:

- the footprint of the former dip tank and transfer pit where DRO was detected in shallow soil at concentrations up to 47,000 mg/kg (Figure 4-1) and GRO was detected in a groundwater sample at $734 \mu g/l$;
- the footprint of the former dip tank where PCP was detected in soil (Figure 4-2) and groundwater at concentrations up to 32 mg/kg and 12 micrograms per liter (µg/l), respectively;
- the area of the former boiler room where DRO was detected in a shallow soil sample at a concentration of 784 mg/kg (Figure 5-1);
- the northeastern portion of the former log pond where DRO was detected in a shallow soil sample at a concentration of 594 mg/kg (Figure 5-1);
- the former refuse burner where dioxins (reported as TEQ) were detected in a five-point composite sample (OMRB-1) collected from shallow soil at a concentration of 30 ng/kg (Figure 5-2); and
- the convergence of three onsite drainages southwest of the log pond where a surface water sample contained lead at a concentration of 18.5 µg/l. It should be noted that this sample was collected during a period of high rainfall.

2.7.3 2005 Targeted Site Assessment

In 2005, E&E conducted a second TSA at the Site to further assess previously identified areas of contamination in soil and groundwater and re-evaluate onsite surface water conditions (E&E, 2005). Analysis of the samples showed the following:

- PCP was detected in soil samples collected north and west of the former dip tank and transfer pit at concentrations up to 150 mg/kg (Figure 4-2) and in groundwater samples collected west of the former dip tank at concentrations up to 110 µg/l.
- Lead was detected in a surface water sample collected at the same general location as the sample collected in 1998 at concentrations less than drinking water standards. However, the 2005 sample contained beryllium and nickel at elevated concentrations. As with the 1998 sample, the 2005 sample was collected during a period of high rainfall.

2.7.4 2007 Targeted Site Investigation

In 2007, URS conducted a TSI to further assess the extent of PCP and DRO in soil and groundwater west of the former dip tank and transfer pit (URS, 2007). Analysis of samples showed the following:

- PCP was detected in a shallow soil sample collected from boring ODT-3 at the western edge of the former dip tank at a concentrations of 130 mg/kg (Figure 4-2).
- PCP and DRO were also detected in a groundwater sample collected from ODT-3 at respective concentrations of 4.5 and 93 µg/l, respectively.

Due to the presence of dense vegetation adjacent to the west of the former dip tank, URS collected their additional groundwater samples (ODT-4 and ODT-5) approximately 130 feet from the western edge of the former tank. PCP and DRO were not detected in either sample.

2.7.5 2014 Phase II ESA

In late 2013, Geocon conducted a Phase II ESA under a USEPA Brownfields assessment grant to further assess the extent of hazardous substance and petroleum impacts at the Site that were identified during previous investigations and to determine if additional assessment and/or cleanup might be necessary prior to the redevelopment of the Site. The results of this investigation were presented in our Phase II ESA report, dated June 5, 2014, and are summarized as follows:

- DRO and ORO concentrations in soil samples collected from the former dip tank/transfer pit area (Figure 4-1) did not exceed their respective PALs.
- PCP in soil at concentrations exceeding the PAL was generally limited to the footprint and area southwest of the former dip tank (Figure 4-2). PCP in soil appeared to extend to a maximum depth of 8 feet and the lateral extent was defined with the exception of the area south and west of the dip tank. PCP in groundwater at concentrations exceeding the PAL also appeared to be limited to the footprint and area southwest of the former dip tank; however, the downgradient (western) extent remained undefined.
- DRO in soil at concentrations exceeding the PAL were generally limited to the footprint and the area southwest of the former boiler room in the upper 5 feet of soil (Figure 5-1). The lateral extent of impacts was not defined. DRO and ORO were detected in the grab-groundwater sample collected southwest of the former boiler room at concentrations exceeding their respective PALs. The downgradient extent of impacted groundwater was not defined during this investigation.
- DRO and ORO were not detected in soil in the area of the former log pond (Figure 4-1) at concentrations exceeding their respective PALs. DRO and ORO were detected in grab-groundwater samples collected on either side of the intermittent stream that flows through the former pond at concentrations exceeding their PALs.
- DRO was detected in soil samples collected north and east of the former refuse burner in soil at concentrations exceeding the PAL (Figure 5-1). The vertical extent of DRO impacts on the eastern side was limited to a depth of 2 feet, but the vertical extent on the northern end of the refuse burner was not defined. Groundwater was not characterized in this area during this investigation.
- Dioxin was detected in soil to depths of at least 5 feet in the area surrounding the former refuse burner (Figure 5-2) at TEQ values ranging from 0.59 to 190 ng/kg. The vertical and lateral extent of impacts were not defined.

2.7.6 2014 Analysis of Brownfields Cleanup Alternatives

In 2014, following the Phase II ESA, Geocon prepared an Analysis of Brownfields Cleanup Alternatives (ABCA) for the Site. The ABCA provided a preliminary evaluation for three potential cleanup alternatives for the Site. The former dip tank area, boiler room and refuse burner were identified as areas for targeted cleanup. The ABCA recommended a cleanup alternative consisting of targeted excavation/disposal and capping of impacted soil.

2.7.7 2015 Targeted Site Investigation

In March 2015, Geocon conducted a TSI to further assess the extent of hazardous substance and petroleum impacts at the Site, which also included the installation and monitoring of five groundwater monitoring wells (OM-1 through OM-5) at the Site (Figure 2). The results of this investigation were presented in our TSI report, dated April 22, 2015, and are summarized as follows:

- PCP was not detected in soil samples collected downgradient of the former dip tank and transfer pit (Figure 4-2) at concentrations exceeding its PAL. PCP, DRO, and ORO were detected in grab-groundwater sample ODT-24 at concentrations exceeding their respective PALs (Table 2).
- DRO was detected in two soil samples collected southwest of the former boiler room (Figure 5-1) at concentrations exceeding the PAL. DRO and ORO were also detected in three grabgroundwater samples from this area at concentrations exceeding their PAL (Table 2).
- DRO and ORO were detected in grab-groundwater samples collected from the former log pond at concentrations exceeding their respective PAL (Table 2).
- Dioxin TEQ values for soil samples collected from the former refuse burner area (Figure 5-2) ranged from 0.49 to 310.59 ng/kg, the maximum of which exceeds the lower end of the PAL range for dioxin TEQ.
- Dioxin was detected in all of the grab-groundwater samples at concentrations exceeding its PAL (Table 4).
- DRO was detected in soil samples from the former refuse burner area at concentrations exceeding its PAL (Figure 5-1). DRO and ORO were detected in a grab groundwater sample from this area at concentrations exceeding their PALs (Table 2).
- DRO was detected in a groundwater grab sample from OM-3 at a concentration of 170 μg/l, which exceeds its PAL (Table 2).
- Dioxin was detected in groundwater samples from OM-1 and OM-5 at TEQ values of 102 and 130 picograms per liter (pg/l), which exceed the PAL (Table 4).
- A variety of metals were detected in groundwater samples from all of the wells at concentrations exceeding their respective PALs (Table 6).

DRO and ORO concentrations were highest in soil and groundwater samples collected from borings that encountered decomposed woody debris and analysis was conducted without using silica gel cleanup. To further assess the type of hydrocarbons present in the samples, we had Cascadia Forensics perform hydrocarbon fingerprinting of the grab-groundwater samples from BR-20 and LP-14 to further evaluate the source of petroleum hydrocarbons. Hydrocarbon figure printing indicated that a majority of the material reported as petroleum hydrocarbons was due to false positive interference from wood or wood waste.

The detections of dioxins in groundwater samples are considered to be anomalous, as dioxins will preferentially partition into soils with high organic content and generally will not desorb into water. The detections of dioxin may be due to the presence of organic material in the groundwater samples.

2.7.8 2016 Groundwater Monitoring

In late March 2016, Geocon conducted groundwater monitoring using monitoring wells OM-1 through OM-5. The results of this monitoring event were presented in our TSI report for The Landing – New Mill Section, dated April 29, 2016, and are summarized as follows:

- PAHs, including PCP, were not detected.
- DRO and ORO were detected in groundwater samples from two wells at maximum concentrations of 170 µg/l, which exceeds the PAL for DRO.
- Lead and chromium were the only metals detected in groundwater samples at concentrations exceeding their respective PALs, with maximum concentrations of 0.058 and 0.022 milligrams per liter (mg/l), respectively.
- TEQ values were detected two groundwater samples at concentrations of 50.4 and 348 pg/l which exceed the PAL.

2.7.9 2016 Targeted Brownfields Assessment - Phase I/II ESA

In late June 2016, Weston Solutions, Inc. (Weston) conducted a Targeted Brownfields Assessment consisting of a combination Phase I/II ESA to further assess the extent of hazardous substance and petroleum impacts at the Site. The results of this investigation were presented in a *Phase I/II Investigation, Targeted Brownfields Assessment Report*, dated October 2016, and are summarized as follows:

- DRO was detected in soil samples collected from within the footprint of the former refuse burner at concentrations exceeding the PAL.
- Dioxins were detected in all of the soil samples collected from 0 to 2 feet and 4 to 5 feet at concentrations ranging from 1.63 to 450 ng/kg.

2.7.10 2016 Analysis of Brownfields Cleanup Alternatives

In 2016, following their Targeted Brownfields Assessment - Phase I/II ESA, Weston prepared an ABCA for the Site. The ABCA provided a preliminary evaluation for five potential cleanup alternatives for the Site. The former dip tank area, boiler room and refuse burner were identified as areas for targeted cleanup. The area of dioxin-impacted soil was significantly expanded from that presented in the 2014 ABCA because of additional data from Weston's 2016 investigation. The conclusions in Weston's ABCA were based on more conservative PALs for DRO and dioxins than we have established for the Site, which are based on the DTSC Human and Ecological Risk Office's (HERO) Note 2 guidance. Weston's ABCA recommended consolidating and capping PCP-, petroleum-, and dioxin-impacted soil on the southern portion of the Site.

2.7.11 January 2018 Groundwater Monitoring

In January 2018, Geocon conducted another round of groundwater monitoring at the Site. Groundwater samples collected from wells OM-1 though OM-5 were analyzed for DRO, ORO, metals, and dioxins. Per DTSC guidance, none of the groundwater samples were filtered prior to analysis. Laboratory analysis for groundwater samples are summarized as follows:

- DRO and ORO were detected in the groundwater sample from OM-4 at concentrations of 70 and 80 µg/l, respectively both less than their respective PALs (Table 2).
- Dioxin was detected in each groundwater sample at concentrations (TEQ values) ranging from 0.168 to 5.61 pg/l all of which are less than the PAL (Table 4).
- Lead was detected in all of the groundwater samples at concentrations ranging from 0.015 to 0.03 all of which equal or exceed the PAL. Arsenic, beryllium, cadmium, and thallium were also detected in the groundwater sample from OM-2 at concentrations that exceed the PAL (Table 6).

The laboratory report is in Appendix A and the monitoring well sampling data sheets are in Appendix B.

2.8 Apparent Problem

Investigation at the Site has identified contaminants in soil resulting from former industrial (lumber mill) land use, including PCP associated with wood treatment processes, petroleum products (diesel fuel and motor oil), and dioxins associated with the incineration of wood waste. PCP and petroleum hydrocarbons are present in soil on the Site at concentrations exceeding established health risk-based screening levels for future recreational and commercial/industrial users of the Site. Dioxins are present in soil on the Site at concentrations that exceed established health risk-based screening levels for residential use; however, the Site is not planned for residential use. Therefore, dioxins are only considered part of the apparent problem for unrestricted use of the Site.

COCs detected in soil have also been detected in water at the Site. Groundwater was reportedly encountered at depths ranging from 8 to 10 feet near the western end of the former dip tank and groundwater is monitored using monitoring wells OM-1 through OM-5 at the Site.

Surface water at the Site includes a stream and shallow standing water in the former log pond. Surface water samples were previously obtained downstream (southwest) of the log pond. Lead (18.5 ug/L), beryllium and nickel were detected in surface water samples collected during periods of high rainfall. The detections are believed to be the result of the analysis of suspended sediment in the surface water sample and are therefore not considered representative of surface water conditions. Metal concentrations in a sediment sample collected from this location were within the range of published background concentrations and additional surface water characterization was not recommended.

3.0 SITE CONCEPTUAL MODEL

Figure 6 is a site conceptual model (SCM) diagram. The SCM depicts:

- Primary source media and release mechanisms;
- Secondary source media and transport mechanisms;
- Potential points of exposure (exposure media) and exposure routes; and
- Potential receptors.

The model components are described below.

3.1 Primary Source Media

Primary source media include:

- Organic constituents (petroleum products, biocides, and combustion byproducts) released to the ground surface as a result of past industrial land use.
- Inorganic constituents (metals) that are naturally-occurring or released to the ground surface as a result of past industrial land use.

3.2 Primary Release Mechanisms

The following primary release mechanisms correspond with the source media listed above:

- Organic constituents may have been released to the ground surface as a result of incidental spillage:
 - Petroleum products related to spillage or leakage of fuels (e.g., diesel) and motor oil, gear oil, or waste oil.
 - Biocides (e.g., pentachlorophenol, or PCP) from dip tanks or storage areas associated with preservation of wood products.
 - Combustion byproducts (e.g., dioxins and furans) associated with partial combustion of wood products at and near incinerator locations.
- Inorganic constituents (metals such as arsenic, cadmium, chromium, mercury, nickel, lead, and zinc) may be derived from industrial processes and degradation of waste products, or may occur naturally in native soil and rock.

3.3 Secondary Source Media

The secondary source media are contaminated surface soil, shallow subsurface soil, and groundwater. Surface water is not considered a medium of concern as described above in Section 2.5.

3.4 Transport Mechanisms

Transport mechanisms are depicted on Figure 6 and are described below.

<u>Surface Water Erosion</u>: Seasonal overland surface water flow during storm events may transport contaminated soil via sediment in suspended form.

<u>Leaching</u>: Precipitation and percolation may leach heavy metals from contaminated soil and transport them in dissolved form.

<u>Erosion</u>: Erosion of contaminated soil by wind or mechanical disturbance may transport suspended particulates.

<u>Volatilization</u>: The HHRA (Section 5.0) considers volatilization for air exposure pathways for both organic and inorganic (e.g., mercury) COCs.

<u>Biological Uptake</u>: Contaminants may be incorporated in plant tissue as a result of biological uptake for plants growing in contaminated soil. These contaminants may be incorporated in animal tissue through the food chain or as a result of direct contact (ingestion, dermal contact, inhalation of soil dust) with contaminated soil. Considering the proposed land uses (commercial/industrial and recreational), biological uptake resulting from vegetable or animal consumption is not considered a complete exposure pathway for human exposure.

3.5 Exposure Media and Exposure Routes

Exposure media for the Site are soil, air, and water. Air may contain both suspended particulates (dust) and vapor (volatile constituents). Exposure routes are incidental ingestion and dermal contact with contaminated soil and water, and inhalation of particulates or vapors originating from the contaminated soil and water. The HHRA considers volatilization for air exposure pathways for both organic and inorganic (e.g., mercury) COCs.

Groundwater exposure is not likely for onsite receptors because groundwater is not a source of drinking water at the Site, and the Site is located in an area served by treated municipal drinking water. However, groundwater is considered a medium of concern because drinking water is a potential beneficial use of groundwater. Surface water is not considered a medium of concern as described above in Section 2.5.

Ingestion of plant and animal tissue is a potential exposure pathway in the case of future vegetable garden cultivation, hunting, or fishing. Food chain exposure pathways are not evaluated in the human health assessment based on the proposed site use (commercial/industrial and recreational).

3.6 Potential Receptors

The Site is currently open space. The City plans to construct a community park and light commercial infrastructure on the Site. Potential receptors include offsite residents, commercial workers, construction workers, trespassers, and recreational visitors. Ecological receptors are described in the Ecological Scoping Assessment in Section 6.0.

3.7 Areas of Concern

The Site includes the former locations of several industrial unit processes associated with past lumber milling activity including:

- Log pond;
- Dip tank and transfer pit;
- Boiler room; and
- Refuse burner.

4.0 BACKGROUND EVALUATION

4.1 Metals in Soil

For the purposes of the HHRA, it is useful to distinguish between background metals concentrations occurring naturally in soil and elevated concentrations resulting from past waste disposal or releases of hazardous substances to the environment. According to the DTSC's HERO Note No. 3 (DTSC, 2018), "HERO strongly recommends consideration of site-specific background concentrations of inorganic constituents."

DTSC (1997) provides a framework in which risk assessors may identify background metals concentrations. Pursuant to DTSC guidance (http://www.dtsc.ca.gov/AssessingRisk/backgrnd.cfm), "risk assessments should eliminate from consideration those whose range of concentrations falls within the range of local ambient conditions." To do this, the local ambient data set may be defined by pooling all site data and determining ambient conditions in the presence of possible contamination. DTSC (1997) describes two methods of comparison:

- 1. Comparison of all detected COC concentrations on a site for a given metal to a single concentration representative of the upper range of local ambient conditions; and
- 2. Comparison of mean COC concentrations on a site for a given metal to mean ambient concentrations using the Wilcoxon Rank Sum test, a simple non-parametric statistical technique.

The two methods may be used to compare both high-end concentrations and mean concentrations to determine whether impacts exist.

Site metals data are presented in Tables 5 and 6. ProUCL Version 5.1 (USEPA, 2015) was used to perform outlier tests and to prepare box plots and normality plots (Q-Q Plots), which are in Appendix C.

Based on the outlier test results and visual interpretation of the plots, the datasets were culled so that only a single population nearest the origin is used to represent background conditions. ProUCL was then used to perform background threshold value (BTV) statistics on the culled datasets.

Statistical evaluation of site soil metals data is summarized below. ProUCL 5.1 (USEPA, 2015) worksheets, statistical tests, plots and BTV statistics are in Appendix C. Statistical evaluation is summarized in Table 1a and 1b in Appendix D, respectively, for the entire Site and the background population.

4.1.1 Antimony

Antimony was detected in 6 of 61 soil samples at concentrations up to 4.8 mg/kg. The practical quantitation limit (PQL) ranges from 2 to 9.9 mg/kg. The data appear to be normally distributed with no outliers. The BTV for antimony is based on the upper range of detected values (4.8 mg/kg). The detected values are less than the RSL for antimony in residential soil (31 mg/kg) and commercial/industrial soil (580 mg/kg).

4.1.2 Arsenic

Arsenic was detected in 37 of 61 soil samples at concentrations ranging from 0.97 to 8.0 mg/kg. The PQL ranges from 0.6 to 2.9 mg/kg. Summary statistics for the soil arsenic data set for the entire Site are presented in Appendix D, Table 1a.

Inspection of the quantile-quantile (Q-Q) plot (Appendix C) indicates an inflection point at a soil arsenic value of approximately 4.5 mg/kg. The Q-Q plot for soil arsenic values below the inflection point is linear, indicating a single population nearest the origin. Excluding three potential outliers (5.7, 7.3 and 8.0 mg/kg) above this inflection point, Rosner's Outlier Test identified no potential outliers at 5% significance level for the culled population. Pursuant to DTSC (1997, 2009) guidance, this population is considered to be representative of background soil arsenic conditions for the Site.

The data are approximately normal at 5% significance level based on normal goodness-of-fit tests. Assuming a normal distribution, the 95% Kaplan Meier (KM) Chebyshev Upper Prediction Limit (UPL) is 6.61 mg/kg. Only two arsenic concentrations (7.3 and 8.0 mg/kg) exceed this UPL: sample OMDT-10-5 (7.3 mg/kg) was obtained in 1998 from the southwestern end of the former dip tank at a depth of 5 feet, and sample OMLP-2-1 (8.0 mg/kg) was obtained from near the center of the former log pond at a depth of 1 foot.

4.1.2.1 Statistical Comparison of Background Data to Site Data

ProUCL 5.0 (USEPA, 2015) was used to perform the Wilcoxon-Mann-Whitney (WMW) test (Bain and Engelhardt, 1992), which is also known as the Wilcoxon Rank Sum test. WMW is a non-parametric test used for determining whether a difference exists between site and background population distributions. The WMW test statistic tests whether or not central tendency measurements from one population tend to be larger than those from another population based upon the assumption that the population distributions are comparable.

Site soil arsenic populations (including the three potential outliers) were compared to the background soil arsenic data set (excluding the three potential outliers) using the WMW Background Test Form 1, for which the null hypothesis is that the constituent concentrations in potentially impacted areas are not statistically greater than the background concentrations.

For comparison of the complete Site data set to background, the null hypothesis is not rejected, indicating that the mean soil arsenic value for the Site is not significantly larger than the mean of the background population, despite the three potential outliers (5.7, 7.3 and 8.0 mg/kg).

4.1.3 Barium

Barium was detected in 60 of 61 soil samples at concentrations ranging from 5.5 to 610 mg/kg. The mean value is 166 mg/kg. Rosner's test detects one outlier (610 mg/kg) at the 1% significance level. The BTV for barium is based on the upper range of background values (429 mg/kg) based on the Q-Q plot. The data do not follow a discernable distribution, and ProUCL suggest the 95% KM (Chebyshev) upper confidence limit (UCL) (231 mg/kg) as a central tendency value. The maximum detected value is less than the RSL for barium in residential soil (15,000 mg/kg) and commercial/industrial soil (220,000 mg/kg).

The single outlying value (RB-3-5; 610 mg/kg) was obtained from the refuse burner area at a depth of 5 feet. The shallower samples at this location (RB-3-1 and RB-3-2) obtained from depths of 1 and 2 feet had barium concentrations of 30 and 5.5 mg/kg, respectively. The other barium concentrations detected in this area are within the background range. Therefore, the single outlying value is considered anomalous.

4.1.4 Beryllium

Beryllium was detected in 24 of 61 soil samples at concentrations ranging from 0.38 to 1.5 mg/kg. The mean value is 1.1 mg/kg. The data follow a normal distribution at the 5% significance level based on the Shapiro-Wilk normality test. The BTV for beryllium is based on the upper range of background values (1.5 mg/kg). The beryllium values detected in site soil are less than the DTSC HERO Note 3 screening level (DTSC-SL) for beryllium in residential soil of 3 mg/kg and commercial/industrial soil of 210 mg/kg.

4.1.5 Cadmium

Cadmium was detected in 38 of the 55 soil samples at concentrations ranging from 0.15 to 0.93 mg/kg. Rosner's test detects no outliers at the 1% significance level. The BTV for cadmium is based on the upper range of background values (0.93 mg/kg). This maximum concentration is less than the DTSC-SL for cadmium in residential soil of 5.2 mg/kg and commercial/industrial soil of 7.3 mg/kg.

4.1.6 Chromium

Chromium (total) was detected in 60 of 61 soil samples at concentrations ranging from 3.3 to 80.5 mg/kg. The mean value is 29.2 mg/kg. Rosner's test detects no outliers at the 1% significance level. The BTV for chromium is based on the upper range of background values (80.5 mg/kg). This maximum concentration is less than the DTSC-SL for chromium in residential soil of 36,000 mg/kg and commercial/industrial soil of 170,000 mg/kg.

4.1.7 Cobalt

Cobalt was detected in 58 of 61 soil samples analyzed for cobalt at concentrations ranging from 1.4 to 17.3 mg/kg. The mean value is 6.2 mg/kg. Rosner's test detects no outliers at the 5% significance level. The BTV for cadmium is based on the upper range of background values (17.3 mg/kg). This maximum concentration is less than the RSL for cobalt in residential soil of 23 mg/kg and commercial/industrial soil of 350 mg/kg.

4.1.8 **Copper**

Copper was detected in 60 of 61 soil samples at concentrations ranging from 4.2 to 82.6 mg/kg. The mean value is 28.9 mg/kg. Rosner's test detects one outlier (82.6 mg/kg) at the 5% significance level. The data do not follow a discernable distribution, and ProUCL suggests the use of the 95% KM (Chebyshev) UCL (35.38 mg/kg) as a conservative central tendency value. All site soil copper concentrations are less than the RSL for copper in residential soil of 3,100 mg/kg and commercial/industrial soil of 47,000 mg/kg.

A single outlying concentration of 82.6 mg/kg was detected in sample OM-3-2, which was obtained from the transfer pit area at a depth of 2 feet and was qualified with a "J" flag indicating that the value is estimated. The shallow sample at this location (OM-3-0.5) had a copper concentration of 16.5 mg/kg, and the other copper concentrations detected in soil samples from this area are within the background range. Therefore, the single outlying value is considered anomalous.

4.1.9 Lead

Lead was detected in 60 of 61 soil samples analyzed for lead at concentrations ranging from 1.2 to 70.3 mg/kg. The data do not follow a discernable distribution, and ProUCL suggests the use of the 95% KM (Chebyshev) UCL (17.4 mg/kg) as a central tendency value. All site lead concentrations are less than the DTSC-SL for lead in residential soil of 80 mg/kg and commercial/industrial soil of 320 mg/kg.

Rosner's test detects outlying data (70.3, 34.4, 33.1 mg/kg) at the 5% significance level. Two of these values (OM-10-0.5, 70.3 mg/kg and OM-2-0.5, 34.4 mg/kg) were obtained near the former dip tank, and one (OMWA-1-1, 33.1 mg/kg) was obtained near the former refuse burner. Therefore, lead is considered a COC for the former dip tank and refuse burner areas. An inflection point is observed in the Q-Q plot (Appendix C) at approximately 12 mg/kg, which is lower than the lead values detected in background samples BG-1 (27.5 mg/kg) and BG-3 (23.0 mg/kg).

4.1.10 Mercury

Mercury was detected in 18 of 61 soil samples at concentrations ranging from 0.04 to 8.0 mg/kg. The mean value is 0.86 mg/kg. The data do not follow a discernable distribution, and ProUCL suggests the use of the 95% KM (Chebyshev) UCL (0.915 mg/kg) as a central tendency value. The DTSC-SLs for mercury in residential and commercial/industrial soil are 1.0 mg/kg and 4.5 mg/kg, respectively.

The Q-Q plot of the non-transformed data suggests an inflection point at 0.14 mg/kg. Mercury concentrations exceeding 0.14 mg/kg were detected in two soil samples collected within the former dip tank area: OM10-0.5 (2.3 mg/kg), OM-10-2 (8.0 mg/kg) and OM-10-7.5 (1.2 mg/kg), and OM-4-0.5 (2.4 mg/kg) and OM-4-2 (0.17 mg/kg). Therefore, mercury is considered a COC for the former dip tank area.

4.1.11 Molybdenum

Molybdenum was detected in one of 15 soil samples at 1.2 mg/kg. The PQL is 1.0 mg/kg. This concentration is less than the RSL for molybdenum in residential soil of 390 mg/kg and the RSL for commercial/industrial soil of 5,800 mg/kg.

4.1.12 Nickel

Nickel was detected in 60 of 61 soil samples at concentrations ranging from 3.1 to 89.8 mg/kg. The mean value is 30.8 mg/kg. Rosner's Outlier Test detected no potential outliers at the 5% significance level. The Q-Q plot of log-transformed data suggests a single population. The BTV for nickel is based on the upper range of background values (89.8 mg/kg). The site nickel concentrations are less than the DTSC-SL for nickel in residential soil of 490 mg/kg and commercial/industrial soil of 3,100 mg/kg.

4.1.13 Selenium

Selenium was detected in one of 55 soil samples at 2.3 mg/kg. This value is less than the RSL for selenium in residential soil of 390 mg/kg and commercial/industrial soil of 5,800 mg/kg.

4.1.14 Silver

Silver was detected in one of 61 soil samples at 0.62 mg/kg. This value is less than the RSL for silver in residential soil of 390 mg/kg and commercial/industrial soil of 1,500 mg/kg.

4.1.15 Thallium

Thallium was not detected in any of 55 soil samples analyzed for thallium. The PQL ranged from 1.0 to 4.1 mg/kg. The RSL for thallium in residential soil is 0.78 mg/kg.

4.1.16 Vanadium

Vanadium was detected in 60 of 61 soil samples at concentrations ranging from 8.4 to 134 mg/kg. The mean value is 59.5 mg/kg. Rosner's Outlier Test detected no outliers at the 5% significance level. The linear Q-Q plot suggests a single population of data. The BTV for vanadium is based on the upper range of background values (134 mg/kg). The vanadium concentrations detected in site soil ssamples are less than the DTSC-SL for vanadium in residential soil of 390 mg/kg and commercial/industrial soil of 1,000 mg/kg.

4.1.17 Zinc

Zinc was detected in all of the 61 soil samples at concentrations ranging from 4.3 to 109 mg/kg. The mean value is 38.5 mg/kg. Rosner's Outlier Test detected no outliers at the 5% significance level. The Q-Q plot of log-transformed nickel data suggests a single population. The BTV for zinc is based on the upper range of background values (109 mg/kg). All site soil zinc values are less than the RSL for zinc in residential soil of 23,000 mg/kg and commercial/industrial soil of 350,000 mg/kg.

4.1.18 Hexavalent Chromium

Hexavalent chromium was detected in one of 40 soil samples at a trace concentration of 0.2 mg/kg, which is less than the RSL for residential of 0.3 mg/kg and commercial/industrial soil of 6.34 mg/kg.

4.2 Organics and Inorganics in Groundwater

Groundwater samples were not filtered and contain suspended solids. Laboratory analysis data for groundwater samples from monitoring wells OM-1 through OM-5 are considered to be more representative of actual groundwater quality than the data associated with grab-groundwater samples. Groundwater monitoring well construction and development tends to limit suspended particulates in unfiltered groundwater samples, while unfiltered grab groundwater samples tend to have a wide range of suspended particulate content.

The following evaluation considers recent (2015, 2016 and 2018) analysis data for groundwater samples obtained from developed groundwater monitoring wells, and does not include data for grab groundwater samples.

Despite well construction and development, the contaminant concentrations in the unfiltered groundwater samples obtained from the monitoring wells appear to be directly related to the suspended solids content of the groundwater samples. For example, groundwater constituent concentrations are generally higher in the upgradient monitoring well (OM-1) than in the site monitoring wells (OM-2, OM-3, OM-4 and OM-5) for most constituents except for a single sample obtained from OM-5 in March 2015, which had a suspended solids content of 1.03%, a dioxin TEQ value of 130 pg/L, and the only mercury detection (0.42 ug/L). A duplicate sample was obtained from OM-5 in March 2015

which had a suspended solids content of 0.12% and a dioxin TEQ value of 3.9 pg/L. Suspended solids contents in other samples ranged from 0.06% to 0.43%, and the mean value is 0.16%. The highest dioxin TEQ value for all monitoring well groundwater samples was obtained from upgradient well OM-1 (348 pg/L; 0.18% suspended solids).

The statistical evaluation summarized in Table 1e in Appendix D considers organic constituents detected in site soil (DRO, ORO, PCP, dioxin) as well as inorganic constituents (lead, mercury) occurring in site soil at concentrations exceeding their respective background ranges. Table 1f in Appendix D summarizes groundwater data for these constituents in upgradient well OM-1.

5.0 HUMAN HEALTH RISK ASSESSMENT

We performed an HHRA in general accordance with guidelines set forth in DTSC's HHRA guidance (available online at http://www.dtsc.ca.gov/assessingrisk/humanrisk2.cfm). HHRA methodology and results are summarized below.

5.1 Exposure Pathways and Media of Concern

A SCM is presented in Section 3.0 and on Figure 6. Exposure media for the Site are soil, air, and water. Exposure pathways are incidental ingestion and dermal contact with the affected soil, inhalation of particulates and volatile compounds originating from the affected soil, ingestion and dermal contact with affected groundwater, and inhalation of volatile compounds originating from affected groundwater. Surface water pathways are not considered in the risk assessment, as discussed in Section 2.5.

5.2 Exposure Point Concentrations and Chemical Groups

Statistical analysis of laboratory analysis data for site soil identifies organic and inorganic COCs. The statistical evaluation is summarized in Table 2, Appendix D. Exposure Point Concentrations (EPCs) are generally represented by a reasonable maximum exposure (RME) concentration, using the 95% upper confidence limit (95% UCL) on the arithmetic mean constituent concentration, as determined using the latest version of ProUCL (Version 5.0; USEPA, 2015). Statistical calculations are summarized in Appendix C. When UCL calculations are not possible based on a limited number of detections, the maximum detected concentration is typically used as the EPC.

Summary statistics for all site data are presented in Tables 1a and 1b, Appendix D by constituent. EPCs presented in Tables 1a and 1b are considered when quantifying hazard and risk for the Site as a whole. Summary data for COCs for each area of concern are presented in Tables 1c and 1d. As expected based on the conceptual model, the EPCs developed for shallow soil (upper 2 feet, Table 1d) are generally higher than the EPCs developed for all soil depths (Table 1c). Therefore, EPCs for shallow soil (Table 1d) are used for hazard and risk quantification for specific assessment areas (Appendix D).

Because an authoritative rather than random soil sampling approach was employed for the site investigation, there are inherent limitations to the data usability for statistical analysis.

5.3 Constituents of Concern

Site investigation and statistical analysis have identified the following COCs in soil and groundwater:

- DRO:
- ORO;
- PCP;

- Dioxin as TEQ values; and
- Metals (lead and mercury).

Inorganic COC selection is summarized in Table 2 (Appendix D). In general, metals are considered COCs if the EPC exceeds the BTV. As discussed above in Section 4, metals with isolated outlying values (e.g., arsenic, barium, copper) are not considered COCs.

5.4 Exposure Parameters

Soil and air exposure resulting from residential (unrestricted) land use is considered, as are other potential exposure scenarios including industrial, commercial and recreational land use, routine visitation from neighboring residences, and construction worker exposure. Residential use of groundwater is also considered.

5.4.1 Residential Land Use

Exposure parameters for residential land use are adopted from the PEA Guidance Manual (DTSC, 2015) as updated by HERO HHRA Note No. 1 (DTSC, 2014), pursuant to guidance presented in *Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual* (RAGS Part E, Supplemental Guidance for Dermal Risk Assessment; US EPA, OSWER 9285.7-02EP; July 2004) and *Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites* (US EPA, OSWER 9355.4-24; December 2002).

- Child exposure is considered for hazard assessment.
- Exposure frequency is 350 days per year.
- Body weight is 15 kilograms (kg) for child and 80 kg for adult.
- The incidental soil ingestion rate is 200 milligrams per day (mg/day) for child and 100 mg/day for adult. Pica is not considered.
- The inhalation rate is 10 cubic meters per day (m³/day) for child and 20 m³/day for adult.
- Averaging time is 70 years for carcinogenic effects.
- Exposure duration for adults is 20 years. Averaging time for non-carcinogenic effects is equal to the exposure duration.
- Exposed skin surface area is 2,900 square centimeters (cm²) for children and 6,032 cm² for adults.
- Dermal adherence factor is 0.2 milligrams per square centimeter (mg/cm²) for children and 0.07 mg/cm² for adults.
- Particulate emission factor (PEF) is 1.36 x 10⁹ cubic meters per kilogram (m³/kg).

5.4.2 Industrial Land Use

Exposure parameters for industrial land use are adopted from HERO HHRA Note No. 1 (DTSC, 2014):

- Adult exposure is considered.
- Exposure frequency is 250 days per year.
- Body weight is 80 kg.
- The incidental soil ingestion rate is 100 mg/day.
- The inhalation rate is 14 m³/day.
- Averaging time is 70 years for carcinogenic effects.
- Exposure duration is 25 years.
- Averaging time for non-carcinogenic effects is equal to the exposure duration.
- Exposed skin surface area is 6,032 cm².
- Dermal adherence factor is 0.2 mg/cm².
- PEF is $1.36 \times 10^9 \text{ m}^3/\text{kg}$.

5.4.3 Commercial Indoor Worker

Exposure parameters for the commercial indoor worker are adopted from RAGS (USEPA, 2004) and Supplemental Guidance (USEPA, 2002), and are identical to the parameters set forth above for industrial land use, with the following exceptions:

- Incidental soil ingestion rate is 50 mg/day instead of 100 mg/day.
- Exposed skin surface area is 3,300 cm² instead of 6,032 cm².

5.4.4 Child and Adult Recreational Land Use

Exposure parameters for recreational land use are based on the residential (unrestricted) land use exposure scenario with the following modifications:

- Exposure frequency for child and adult ingestion and inhalation is 150 days per year rather than 350 days per year.
- Exposure frequency for child dermal contact is 150 days per year, rather than 350 days per year. Exposure frequency for adult dermal contact is 100 days per year as set forth for the residential (unrestricted) land use scenario.
- Exposure time is 8 hours per day rather than 24 hours per day.

5.4.5 Construction Worker

Exposure parameters for the construction worker are adopted from HERO HHRA Note No. 1 (DTSC, 2014). Considering the expected duration of the cleanup (approximately one month), the default exposure duration (one year) used in this scenario is conservative.

- Adult exposure is considered.
- Exposure duration is one year.
- Exposure frequency is 250 days per year.
- Body weight is 80 kg.
- Incidental soil ingestion rate is 330 mg/day.
- Inhalation rate is 20 m³/day for the eight-hour workday.
- Averaging time is 70 years for carcinogenic effects.
- Averaging time for non-carcinogenic effects is equal to the exposure duration.
- Exposed skin surface area is 6,032 cm².
- Dermal adherence factor is 0.08 mg/cm².
- PEF is $1.0 \times 10^6 \text{ m}^3/\text{kg}$.

5.5 Toxicity Values

Toxicity values and references are listed in Table 3 (Appendix D). Toxicity value selection was performed pursuant to HERO HHRA Note No. 3 (DTSC, 2018). Dioxin TEQ values are derived for dioxins and furans relative to 2,3,7,8-TCDD pursuant to HHRA Note 2 (DTSC, 2017), following the 2005 World Health Organization reevaluation of TEQ factors (Van den Berg, 2006).

5.6 Risk Characterization

5.6.1 Soil and Air

We performed risk and hazard calculations using the following equations for non-volatile constituents in soil. For residential land use, hazard is evaluated for child exposure. Calculations are summarized in Appendix D Tables 4 through 8, and results are summarized in Table 9.

$$\begin{split} Risk_{soil} &= SF_o \; x \; C_s \; x \; [((IR_{s,child} \; x \; EF \; x \; ED_{child} \; x \; 10^{-6} \; kg/mg) \; / \; (BW_{child} \; x \; AT \; x \; 365 \; days/yr)) \; + \; ((SA_{child} \; x \; AF \; x \; ABS \; x \; EF_{child} \; x \; ED_{child} \; x \; 10^{-6} \; kg/mg) \; / \; (BW_{child} \; x \; AT \; x \; 365 \; days/yr)) \; + \; ((IR_{s,adult} \; x \; EF \; x \; ED_{adult} \; x \; 10^{-6} \; kg/mg) \; / \; (BW_{adult} \; x \; AT \; x \; 365 \; days/yr)) \; + \; ((SA_{adult} \; x \; AF \; x \; ABS \; x \; EF_{adult} \; x \; ED_{adult} \; x \; 10^{-6} \; kg/mg) \; / \; (BW_{adult} \; x \; AT \; x \; 365 \; days/yr))] \end{split}$$

$$\begin{aligned} \text{Hazard}_{soil} &= (C_s \, / \, RfD_o) \, \, x \, \left[((IR_s \, x \, EF \, x \, ED \, x \, 10^{-6} \, kg/mg) \, / \, (BW \, x \, AT \, x \, 356 \, days/yr)) \right. \\ &+ ((SA \, x \, AF \, x \, ABS \, x \, EF \, x \, ED \, x \, 10^{-6} \, kg/mg) \, / \, (BW \, x \, AT \, x \, 365 \, days/yr)) \right] \end{aligned}$$

$$\begin{aligned} Risk_{air} &= SF_i \ x \ C_a \ x \ [((IR_{child} \ x \ EF \ x \ ED_{child}) \ / \ (BW_{child} \ x \ AT \ x \ 365 \ days/yr)) + ((IR_{adult} \ x \ EF \ x \ ED_{adult}) \ / \ (BW_{adult} \ x \ AT \ x \ 365 \ days/yr))] \end{aligned}$$

$$Hazard_{air} = (C_a/RfD_i) \times (IR \times EF \times ED) / (BW \times AT \times 365 days/yr)$$

Where:

ABS = absorption fraction of chemical from soil

AT = averaging time, years

AF = soil to skin adherence factor, mg/cm²

BW = body weight, kg

 $C_a = \text{concentration in air, } mg/m^3 (C_a = C_s / PEF)$

 C_s = concentration in soil, mg/kg

ED = exposure duration, years

EF = exposure frequency

PEF = particulate emission factor, m^3/kg

Hazard_{air} = non-cancer chronic health hazard for air pathways

Hazard_{soil} = non-cancer chronic health hazard for soil pathways

 $IR_a = inhalation rate, m^3/day$

 IR_s = incidental soil ingestion rate, mg/day

SA = exposed skin surface area, cm²

 SF_i = inhalation cancer slope factor, $(mg/kg-day)^{-1}$

 $SF_0 = \text{oral cancer slope factor, } (\text{mg/kg-day})^{-1}$

RfD_i = inhalation reference dose, mg/kg-day

RfD_o = oral reference dose, mg/kg-day

Risk_{air} = lifetime excess cancer risk for air pathways

Risk_{soil} = lifetime excess cancer risk for soil pathways

For volatile constituents (i.e., mercury) in soil, the following methodology is used to assess chronic health hazard related to air pathways pursuant to HERO HHRA Note No. 3 (DTSC, 2016).

$$Hazard_{air} = (C_a/RfC_i) \times (EF_i \times ED \times ET) / (AT_{nc} \times 24 \text{ hr/day} \times 365 \text{ day/yr})$$

Where:

 RfC_i = reference concentration for inhalation exposure, mg/m^3 (mercury RfC_i = 3.0E-05 mg/m^3 as established by OEHHA and as listed in Table 3)

 AT_{nc} = averaging time for non-carcinogenic effects, years

 $C_a = \text{concentration in air, } mg/m^3 (C_a = C_s / VF)$

VF = volatilization factor for soil, m^3/kg , as established by DTSC (2016) Table A-5 (VF_{resident} = 3.52E+04 m^3/kg ; VF_{worker} = 3.52E+04 m^3/kg)

 C_s = concentration in soil, mg/kg

EF_i = exposure frequency for inhalation pathway, days/yr

ED = exposure duration, years

ET = exposure time, hr/day (24 hr/day for resident and 8 hr/day for worker)

5.6.2 Water

Risk and hazard calculations are performed using the following equations for non-volatile constituents in water. Calculations are summarized in the Tables 11 and 12 (Appendix D).

$$\begin{split} Risk_{water} &= SFo~x~Cw~x~[(IRw_{child}~x~EF~x~ED_{child})~/~(BW_{child}~x~ATc) + (IRw_{adult}~x~EF~x~ED_{adult})~/~(BW_{adult}~x~ATc) + (SA_{child}~x~Kp~x~ET~x~EF~x~ED_{child}~x~(1~L~/~1,000~cm^3))~/~(BW_{child}~x~ATc) + (SA_{adult}~x~Kp~x~ET~x~EF~x~ED_{adult}~x~(1~L~/~1,000~cm^3))~/~(BW_{adult}~x~ATc) \end{split}$$

$$\begin{aligned} \text{Hazard}_{\text{water}} &= \left(\text{Cw/RfDo} \right) \text{ x } \left[\left(\text{IRw}_{\text{child}} \text{ x EF x ED}_{\text{child}} \right) / \left(\text{BW}_{\text{child}} \text{ x ATnc} \right) + \left(\text{SA}_{\text{child}} \text{ x Kp x ET}_{\text{child}} \right) \\ & \text{x EF x ED}_{\text{child}} \text{ x } \left(\text{1 L / 1,000 cm}^3 \right) \right) / \left(\text{BW}_{\text{child}} \text{ x ATnc} \right) \right] \end{aligned}$$

Where:

SFo = Slope factor ([mg/kg-day]-1)

RfDo = oral reference dose (mg/kg-day)

 $BW_{adult} = body weight, adult (80 kg)$

 $BW_{child} = body weight, child (15 kg)$

ATc = averaging time, carcinogen (70 years x 365 days/year; 25,550 days)

ATnc = averaging time, non-carcinogen (AT = ED x 365 days/year; 2190 days)

EF = exposure frequency (350 days/year)

 ED_{child} = exposure duration, child (6 years)

 $ED_{adult} = exposure duration, adult (20 years)$

 IRw_{child} = ingestion rate, child (0.78 L/day)

 $IRw_{adult} = ingestion rate, adult (2.5 L/day)$

 ET_{child} = exposure time during bathing, child (0.54 hr/day)

 ET_{adult} = exposure time during bathing, adult (0.71 hr/day)

 SA_{child} = skin surface area available for contact, child (6,378 cm²)

 $SA_{adult} = skin surface area available for contact, adult (20,900 cm²)$

Kp = chemical-specific dermal permeability coefficient from water (cm/hour)

Cw = concentration of chemical in water (mg/L)

Risk and hazard calculations are performed using the following equations for volatile constituents in water. Calculations are summarized in the Tables 11 and 12 (Appendix D).

$$\begin{split} Risk_{water} &= SFo~x~Cw~x~[(IRw_{child}~x~EF~x~ED_{child})~/~(BW_{child}~x~ATc) + (IRw_{adult}~x~EF~x\\ &= ED_{adult})~/~(BW_{adult}~x~ATc) + (SA_{child}~x~Kp~x~ET~x~EF~x~ED_{child}~x~(1~L~/~1,000~cm^3))~/~(BW_{child}~x~ATc) + (SA_{adult}~x~Kp~x~ET~x~EF~x~ED_{adult}~x~(1~L~/~1,000~cm^3))~/~(BW_{adult}~x~ATc) + IUR~x~1,000~ug/mg~x~Cw~x~K~x~ET~x~EF~X~ED \end{split}$$

$$\begin{aligned} \text{Hazard}_{\text{water}} &= \left(\text{Cw/RfDo}\right) \times \left[\left(\text{IRw}_{\text{child}} \text{ x EF x ED}_{\text{child}}\right) / \left(\text{BW}_{\text{child}} \text{ x ATnc}\right) + \left(\text{SA}_{\text{child}} \text{ x Kp}\right) \\ &\times \text{ET}_{\text{child}} \times \text{EF x ED}_{\text{child}} \times \left(\text{1 L / 1,000 cm}^3\right)\right) / \left(\text{BW}_{\text{child}} \times \text{ATnc}\right) + \text{K x ET x EF x ED}_{\text{child}} / \text{AT} \end{aligned}$$

Where:

IUR = inhalation unit risk (ug/m³)⁻¹

K = Andelman volatilization factor (0.5 L/m³)

5.7 Summary of Results

Risk assessment results for soil are summarized in Appendix D Table 9. The table lists hazard and risk for each area of concern and exposure scenario paring, considering all COCs as well as providing specific results for hazard and risk related to dioxins/furans.

HHRA Note No. 2 (DTSC, 2017), provides recommended health-protective remedial goals for soil contaminated by dioxins and dioxin-like compounds expressed as dioxin TEQ concentrations. DTSC (2017) recommends a remedial goal ranging from 220 to 700 ng/kg for commercial/industrial sites based on a central tendency value (95% UCL). The TEQ concentration of 220 ng/kg corresponds to a risk of one-per-ten-thousand (1.E-05), and the TEQ concentration of 700 ng/kg corresponds to a hazard quotient of unity (1). DTSC (2017) states that the selection of a remedial goal between 200 and 700 ng/kg should be performed in consultation with DTSC HERO.

As described in Section 5.2, the EPCs developed for shallow soil (upper 2 feet, Table 1d) are generally higher than the EPCs developed for all soil depths (Table 1c). Therefore, EPCs for shallow soil (Table 1d) are used for hazard and risk quantification for specific assessment areas.

5.7.1 Residential Land Use

5.7.1.1 All Detected Chemicals, Including Ambient Range Constituents of Concern

Table 4a (Appendix D) summarizes hazard and risk for all site data considering all detected constituents. EPCs for the entire Site are presented in Tables 1a and 1b (Appendix D). Pursuant to guidelines set forth in HERO HHRA Note No. 4 (DTSC, 2014), it is appropriate to evaluate hazard and risk associated with exposure to all detected chemicals, including those that are determined to be consistent with site-specific background or ambient concentrations. This information is intended to be useful for risk management decisions and to foster public transparency.

As summarized in Table 4a, background arsenic concentrations in soil (EPC 2.5 mg/kg based on 95% UCL) results in a hazard quotient (HQ; 6.3) greater than unity and a lifetime excess cancer risk (risk; 2.E-05) greater than one-per-million under the residential exposure scenario. The COCs mercury and dioxin TEQ contribute significantly to the hazard index (HI), and the COCs PCP and dioxin TEQ contribute significantly to the cumulative risk.

5.7.1.2 Constituents of Concern

Human health risk and hazard under a residential exposure scenario are characterized in Tables 4b through 4e (Appendix D). For all assessment areas, the chronic health hazard index (hazard, or HI) exceeds unity, and the lifetime excess cancer risk (risk) exceeds one-per million. Therefore, the Site is not considered suitable for unrestricted land use in its present condition.

5.7.2 Industrial Land Use

Human health hazard and risk are characterized under an industrial land use scenario in Tables 5a through 5d (Appendix D). Results are presented in Table 9 (Appendix D) and summarized below.

Assessment Area	Result				
Log Pond	HI<1, Risk<10-6 excluding dioxin TEQ. Dioxin TEQ Risk<10-5				
Dip Tank and Transfer Pit	HI>1, (driven by DRO), Risk>10-6 (driven by PCP)				
Boiler Room	HI<1, Risk<10-6 excluding dioxin TEQ. Dioxin TEQ Risk<10-5				
Refuse Burner	HI<1, Risk<10-6 excluding dioxin TEQ. Dioxin TEQ Risk<10-5				

Therefore, all assessment areas except Area 2 appear to be suitable for industrial use. DRO and PCP concentrations in soil at Area 2 are not suitable for industrial land use based on this exposure scenario.

5.7.3 Commercial Indoor Worker

Human health hazard and risk are characterized under a commercial indoor worker scenario in Tables 6a through 6d (Appendix D). Results are presented in Table 9 (Appendix D) and summarized below.

Assessment Area	Result				
Log Pond	HI<1, Risk<10-6 excluding dioxin TEQ. Dioxin TEQ Risk<10-5				
Dip Tank and Transfer Pit	HI>1, (driven by DRO), Risk>10-6 (driven by PCP)				
Boiler Room	HI<1, Risk<10-6 excluding dioxin TEQ. Dioxin TEQ Risk<10-5				
Refuse Burner	HI<1, Risk<10-6 excluding dioxin TEQ. Dioxin TEQ Risk<10-5				

Therefore, all assessment areas except Area 2 appear to be suitable for commercial use. DRO and PCP concentrations in soil at Area 2 are not suitable for commercial land use based on this exposure scenario.

5.7.4 Child and Adult Recreational Use

Human health hazard and risk are characterized under child and adult recreational use scenarios in Tables 7a through 7d (Appendix D). Results are presented in Table 9 (Appendix D) and summarized below.

Assessment Area	Result			
Log Pond	HI<1, Risk<10-6 excluding dioxin TEQ. Dioxin TEQ HQ=1.2, Risk<10-5			
Dip Tank and Transfer Pit	HI>1, (driven by DRO), Risk>10-6 (driven by PCP)			
Boiler Room	HI<1, Risk<10-6 excluding dioxin TEQ. Dioxin TEQ Risk<10-5			
Refuse Burner	HI<1, Risk<10-6 excluding dioxin TEQ. Dioxin TEQ Risk<10-5			

Therefore, all assessment areas except Area 2 appear to be suitable for recreational use. DRO and PCP concentrations in soil at Area 2 are not suitable for recreational land use based on this exposure scenario.

5.7.5 Construction Worker

Human health hazard and risk are characterized under a construction worker scenario in Tables 8a through 8d (Appendix D). Results are presented in Table 9 (Appendix D) and summarized below.

Assessment Area	Result				
Log Pond	HI<1, Risk<10-6 excluding dioxin TEQ. dioxin TEQ Risk<10-5				
Dip Tank and Transfer Pit	HI>1, (driven by DRO), Risk>10-6 (driven by PCP)				
Boiler Room	HI<1, Risk<10-6 excluding dioxin TEQ. Dioxin TEQ Risk<10-5				
Refuse Burner	HI<1, Risk<10-6 excluding dioxin TEQ. Dioxin TEQ Risk<10-5				

Therefore, all assessment areas except Area 2 do not appear to require specific controls for construction. DRO and PCP concentrations in soil at Area 2 require specific handling protocols for worker protection.

5.7.6 Residential Groundwater Use

Human health hazard and risk are characterized under a residential groundwater use scenario in Tables 11 and 12 (Appendix D). The statistical evaluation summarized in Table 1e (Appendix D) considers organic constituents detected in site soil (DRO, ORO, PCP, dioxin TEQ) as well as inorganic constituents (lead, mercury) in site soil at concentrations exceeding the background range. Table 1f (Appendix D) summarizes groundwater data for these constituents in upgradient well OM-1. The EPCs for unfiltered groundwater presented in Tables 11 and 12 show that groundwater is not suitable for residential use.

As described in Section 4.2, contaminant concentrations in the unfiltered groundwater samples obtained from the monitoring wells appear to be related to the suspended solids content of the groundwater samples. For example, groundwater constituent concentrations are generally greater in the upgradient monitoring well (OM-1) than in the downgradient wells (OM-2, OM-3, OM-4 and OM-5) for most constituents except for a single sample obtained from OM-5 in March 2015, which had a suspended solids content of 1.03%, a dioxin TEQ value of 130 pg/L, and the only mercury detection of 0.42 ug/L. A duplicate sample was obtained from OM-5 in March 2015 with a suspended solids content of 0.12% and a dioxin TEQ value of 3.9 pg/L. Other suspended solids contents range from 0.06% to 0.43%, and the mean value is 0.16%. The highest dioxin TEQ value for all monitoring well samples of 348 pg/l was obtained from upgradient well OM-1 with 0.18% suspended solids.

5.8 Lead Hazard Assessment

Lead hazards were assessed using the Lead Risk Assessment Spreadsheet Version 8 (LeadSpread 8; DTSC, 2011) for child exposure, and the Modified USEPA Adult Lead Model (Modified ALM; DTSC, 2011) for adult exposure. LeadSpread and the Modified ALM worksheets are in Appendix E. Calculations were performed using standard exposure parameters and the EPC values (95% UCL values) listed in Tables 1a and 1b (Appendix D). Results are summarized in Table 10 (Appendix D).

The California Environmental Protection Agency (CalEPA) Office of Environmental Health Hazard Assessment (OEHHA) modified the toxicity evaluation of lead in 2007, replacing the 10 micrograms per deciliter (µg/dl) threshold blood concentration with a source-specific "benchmark change" of 1.0 µg/dl. This change is addressed in the OEHHA publication Child-Specific Benchmark Change in Blood Lead Concentration for School Site Risk Assessment (OEHHA, April 2007; http://oehha.ca.gov/risk-assessment/crnr/final-report-chrc-lead).

As summarized in Table 10, the Site maximum soil lead value of 70.3 mg/kg and the RME soil lead value of 17.4 mg/kg yield blood lead levels less than 1.0 μ g/dl considering the standard exposure parameters in the child and adult exposure models (Appendix D).

5.9 Uncertainty Analysis

Per OEHHA (2004), "systematic, logical and informed approaches to decision making about carcinogens in the environment call for quantitative assessments, because the absence of clearly definable thresholds does not permit identification of 'safe' levels of exposure. Unfortunately, due to the frequent lack of sufficient data, assumptions have to be made in order to complete quantitative assessments of cancer risk."

There are uncertainties associated with contaminant concentrations in site media; the amount of exposure to site media; and the toxicological effects of contaminants. Such uncertainty must be discussed so that the assessment does not result in a "higher degree of implied certainty in the overall assessment than is warranted" (OEHHA, 2004).

As a result of the uncertainties described below, confidence in the exposure assessment is considered low to moderate. Confidence in toxicity values range from low to high based on the data available for specific contaminants.

5.9.1 Sampling Uncertainty

Sampling uncertainty related to contaminant concentrations in soil, as well as sampling uncertainty related to the literature-derived exposure and toxicity parameters, contribute to the overall uncertainty of the assessment. Statistical analysis is performed as part of the assessment to develop an RME. Confidence in a population mean and variance increases as the number of samples collected and analyzed increases. Based on the moderate sample population and the authoritative sampling approach, confidence in sampling is considered moderate to low.

5.9.2 Model Uncertainty

The literature-derived exposure factors and toxicity factors used in the assessment were obtained with the goal of reducing uncertainty; however, limitations of existing data pertaining to activity patterns for future site occupants, as well as health effects from exposure to contaminants, result in model uncertainty.

5.9.3 Laboratory Methods and Detection Limits

Contaminant concentrations in soil generally exceed the corresponding laboratory detection limits. Therefore, detection limits are not expected to be a significant source of uncertainty.

5.9.4 Toxicity Values

The slope factors used for risk characterization imply a linear (no threshold) dose-response relationship. If the dose-response relationship is non-linear, the assumption of linearity would tend to overestimate risks. In general, the literature-derived toxicity values are based on conservative estimates that tend to overestimate health risk.

5.10 Conclusions

5.10.1 Unrestricted Land Use

Baseline conditions at all assessment areas are not suitable for residential land use. For all assessment areas, the chronic health hazard index (hazard, or HI) exceeds unity, and the lifetime excess cancer risk (risk) exceeds one-per million. Therefore, the Site is not considered suitable for unrestricted land use in its present condition.

5.10.2 Proposed Future Commercial/Industrial and Recreational Land Use

All assessment areas except Area 2 (Dip Tank and Transfer Pit) generally appear to be acceptable for use under the other exposure scenarios evaluated, including industrial, indoor commercial, recreational and construction worker.

Without hot spot removal, the DRO and PCP concentrations in soil at Area 2 (Dip Tank and Transfer Pit) are generally not suitable for use under the exposure scenarios evaluated in this assessment. The DRO and PCP concentrations in soil at Area 2 require specific handling protocol for construction worker protection, including dust control and hazard communication.

5.10.3 Potential Hot Spots

The assessment identified the following potential hot spots.

5.10.3.1 PCP and Mercury

PCP is considered a COC for two locations within the Dip Tank and Transfer Pit Area, and mercury is considered a chemical of potential ecological concern (COPEC) at these locations:

- Location OM-10 based on laboratory analysis results for samples OM-10-0.5 (150 mg/kg PCP, 2.3 mg/kg mercury), OM-10-2 (150 mg/kg PCP, 8.0 mg/kg mercury), and OM-10-7.5 (15 mg/kg PCP, 1.2 mg/kg mercury).
- Location OM- 4 based on laboratory analysis results for samples OM-4-0.5 (11 mg/kg PCP, 2.4 mg/kg mercury) and OM-4-2 (12 mg/kg; 0.17 mg/kg mercury)

5.10.3.2 DRO

DRO is considered a COC for the Dip Tank and Transfer Pit Area, particularly at OMTP-2 based on laboratory analysis results for sample OMTP-2-1 (47,000 mg/kg). However, DRO in this area appears to be limited to this location.

5.10.3.3 Other Potential Hot Spots

Other PCP-impacted soil with concentrations exceeding screening levels is present in the Dip Tank and Transfer Pit Area and other DRO-impacted soil with concentrations exceeding screening levels is present at the down slope side of the Boiler Room Area and at the Refuse Burner Area. Although these elevated soil PCP and DRO concentrations did not result in unacceptable central tendency values, these areas should be considered when determining the extent of hot spot removal.

5.10.4 Residential Groundwater Use

Groundwater exposure is not likely for onsite receptors because the Site is located in an area served by treated municipal drinking water. However, groundwater is considered a medium of concern because drinking water is a potential beneficial use of groundwater.

Based on the assessment presented herein, the groundwater obtained from the monitoring wells at the Site is not suitable for residential use.

As described in Section 4.2, contaminant concentrations in the unfiltered groundwater samples obtained from the monitoring wells appear to be related to the suspended solids content of the groundwater samples. Groundwater constituent concentrations are generally higher in samples from the upgradient monitoring well (OM-1) than in those from the downgradient wells (OM-2, OM-3, OM-4 and OM-5) for most constituents except for a single sample obtained from OM-5 in March 2015, which had a suspended solids content of 1.03%, a dioxin TEQ value of 130 pg/l, and the only mercury detection of 0.42 ug/l. A duplicate sample was obtained from OM-5 in March 2015 with a suspended solids content of 0.12% and a dioxin TEQ value of 3.9 pg/l, and mercury was not detected. Other suspended solids contents range from 0.06% to 0.43%, and the mean value is 0.16%. The highest dioxin TEQ value for all monitoring well samples was obtained from upgradient well OM-1 at 348 pg/l with 0.18% suspended solids.

6.0 ECOLOGICAL RISK ASSESSMENT

We performed an Ecological Scoping Assessment in general accordance with guidelines set forth in DTSC's Ecological Scoping Assessment guidance (http://www.dtsc.ca.gov/assessingrisk/eco2.cfm).

6.1 Ecological Scoping Assessment

Scoping-level assessment is described in *Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities*, Part A: Overview (DTSC, 1996). An Ecological Scoping Assessment is the first phase of assessment, and is intended to develop a conceptual site model, identify contaminants and receptors of concern and potential exposure pathways.

A scoping-level assessment consists of characterization of the chemical, physical, and biological nature of the Site, and an evaluation of the potential for complete exposure pathways. The results of this qualitative assessment may be used to determine the need for, and the extent of, further assessment. Components of the Ecological Scoping Assessment include:

- Site characterization;
- Biological characterization; and
- Pathway assessment.

6.1.1 Site Characterization

Site characterization findings are summarized in Section 2 of this report, and an SCM is developed in Section 3.

6.1.1.1 Conceptual Model

Figure 6 is an SCM diagram for the Site depicting source media, release mechanisms, and transport mechanisms. Figure 7 is a conceptual model diagram for ecological receptors.

6.1.1.2 Areas of Concern

The Site is divided into four assessment areas as listed below.

Assessment Area	Description	Size (acres)
1	Log Pond	3.5
2	Dip Tank and Transfer Pit	0.5
3	Boiler Room	0.2
4	Refuse Burner	0.2

The assessment areas are currently vegetated open space. Future land use includes commercial, industrial and/or recreational use.

6.1.1.3 Constituents of Potential Ecological Concern

COPECs are identified based on comparison to ecological screening levels and background concentrations. The comparison addresses the following questions:

- Does the EPC exceed ecological soil screening levels (Eco-SSLs)?
- Does the EPC exceed the upper-end background concentration?

Constituents that meet both criteria are considered COPECs.

As described in Section 4.1, lead and mercury are present in site soil at the Dip Tank/Transfer Pit Area at concentrations exceeding site background concentrations, and lead is present in site soil at the Refuse Burner Area at concentrations exceeding site background concentrations. In addition, organic constituents DRO, ORO, PCP, and TEQ are present in site soil in multiple assessment areas.

COPEC selection is summarized in Tables 13 through 16 in Appendix D. Ecological EPCs are represented by 95% UCL values, or for small data sets, by maximum detected concentrations. As described in Section 5.2, EPCs developed for shallow soil (upper 2 feet) are generally higher than the EPCs developed for all soil depths. Therefore, EPCs for shallow soil (Table 1d) are used for this scoping assessment. COPECs are listed by assessment area below.

Assessment Area	COPEC	95 % UCL (mg/kg)	Maximum Detected Concentration (mg/kg)
1 Log Pond	none	NA	NA
2 Dip Tank and Transfer Pit	mercury	2.32	8.0
	PCP	24.4	150
3 Boiler Room	none	NA	NA
4 Refuse Burner	none	NA	NA

Notes:

 COPEC = constituent of potential ecological concern

NA = not applicable (no UCL calculated)

PCP = pentachlorophenol

UCL = upper confidence limit on mean detected concentration

6.1.2 Biological Characterization

Biological characterization of the Site and adjacent property has previously been performed by others as part of the *Roseburg Commerce Park Draft Environmental Impact Report*, SCH No. 98032006 (Draft EIR; Pacific Municipal Consultants, May 1998). Section 4.7 of the Draft EIR describes the Site's biological resources, regulatory framework, potential impacts and mitigation measures related to a previously proposed development project (Appendix F).

The biological resources study was conducted by North State Resources using the following methods:

- Lists of special status plant and wildlife species were reviewed, including lists from the California Department of Fish and Game and the United States Fish and Wildlife Service.
- Searches and queries of the California Department of Fish and Game Natural Diversity Database (CNDDB), California Native Plant Society Electronic Inventory (Skinner and Pavlik, 1994) and the CDFG Wildlife Habitat Relationships System (Airola, 1988) were conducted to search for potential special status floral or fauna.
- The Site was transected on foot to characterize vegetation habitats and to document features
 that may be considered potential habitat for special status flora and fauna. Vegetation was
 classified using the WHR system (Mayer and Laudenslayer 1988). Wildlife species were
 identified by direct observation, by identification of vocalizations, or by observation of various
 animal signs.

6.1.2.1 Habitats

The following habitats were identified:

- The northeastern end of the Site (former log pond area, including the adjacent boiler room area and refuse burner area) and the eastern edge of the Site were mapped as fresh emergent wetland/montane riparian complex.
- The remainder of the Site (including the dip tank and transfer pit area) was mapped as barren and/or disturbed areas

Vegetation Community	Area (acres)	Portion of Site (%)
Fresh Emergent Wetland / Montane Riparian Complex	8.5	43
Barren and/or Disturbed Areas	11.5	57

6.1.2.2 Species and Communities

A complex of fresh emergent wetland/montane riparian vegetation was identified at the log pond area, which includes a perennial stream and several springs and seeps. Vegetation was described as moderate to dense network of emergent wetland and riparian species. Dominant species within this area include sedges (*Carer*: spp.), rushes (*Jimcus* spp.), broad-leaf cattail (*Typha latifolia*), bracken fern (*Pteridium aquilinum*), doc (*Rumex* sp.) and horsetail fern (*Equisetum arvense*). Riparian vegetation is moderate to

dense and includes an overstory of white alder (*Alnus rhombifolia*), willow (*Salix* spp.), and black cottonwood (*Populus trichocarpa*). Shrubs include Himalayan blackberry (*Rubus discolor*), spirea (*Spirea douglasii*), wood rose (*Rosa woodsi*), snowberry (*Symphoricarpos* sp.), and thimbleberry (*Rubus parviflorus*). The southern portion of the western half of this area is occupied by a dense stand of montane chaparral dominated by green leaf manzanita, mountain whitethorn, bitter cherry and chinquapin with occasional black oaks.

The central and southern portions of the Site are dominated by disturbed areas resulting from former mill operations. Vegetation within these areas is described as a combination of trees, shrubs, and grasses and forbs. Dominant tree species include ponderosa pine (*Pinus ponderosa*), incense cedar (*Calocedrus decurrens*), Douglas fir (*Pseudotsuga menziesii*) and black oak (*Quercus kelloggii*). Shrubs are found growing in dense to sparse motts and include green leaf manzanita (*Arctostaphylos patula*), mountain whitethorn (*Ceanothus cordulatus*), tobacco brush (*C. velutinus*), rabbitbrush (*Chrysothamnus nauseosus*), bitter cherry (*Pnmus emarginata*), scotch broom (*Cytisus scoparius*), and chinquapin (*Castanopsis sempervirens*). Other herbaceous growth occurs throughout the disturbed areas and includes everlasting peavine (*Lathyrus latifolius*), common mullein (*Verbascum* sp.), willow-herb (*Epilobium* sp.), bull thistle (*Cirsium* sp.) plantain (*Plantago* sp.), and various other grasses and forbs.

6.1.2.3 Special Status Species

Five special status plant species were found to exist in similar habitats within the general vicinity of the Site. These species include Shasta chaenactis (*Chaenactis sziffrutescens*), pallid bird's beak (*Cordylanthus tenuis ssp.pallencens*), Oregon fireweed (*Epilobium oreganum*), Aleppo avens (*Geum aleppicum*), and northern adder's-tongue (*Ophioglossum pusillum*). No record of these species being within the Site was identified. Shasta chaenactis occurs in coniferous forests on sandy or serpentine soils. Oregon fireweed and Aleppo avens occur in meadow or bog/fen habitats. Although historical records exist of its occurrence in the Mt. Shasta area, northern adder's-tongue is considered extirpated in California. Pallid bird's-beak is known from the lower montane conifer forests in the vicinity of Black Butte and areas southwest. Potential habitat may occur within the Site for pallid-bird's beak, particularly in forested areas in the eastern portion of the Site. Potential habitat for the four other special status species mentioned was not identified within the Site.

Potential habitat for two amphibian wildlife species (northern red-legged frog - *R. aurora auro*ra) and Cascades frog (*R. cascadae*) was identified within wetland areas, which are primarily associated with the log pond area. Potential habitat for three avian special status wildlife species (northern goshawk - *Accipiter gentilis*), Cooper's hawk (*A. cooperii*) and sharp-shinned hawk (*A. striatus*) was identified in the forested area to the east of the Site, across Mt. Shasta Boulevard.

6.1.3 Pathway Assessment

Terrestrial receptors are potentially exposed to elevated metals concentrations in contaminated soil. Site conceptual model diagrams are presented as Figures 7 and 8. The conceptual model is described in Section 3, and assessment areas are described in Section 6.1.1.

The contaminated medium at the Site is soil. The potential for significant surface water impact is expected to be low. Potentially complete exposure pathways include:

- Direct exposure to contaminated soil for producers and invertebrates;
- Indirect exposure for consumers via food-web transfer (ingestion of affected biota); and
- Secondary direct exposure for consumers (incidental soil ingestion, inhalation of airborne particulate sand dermal contact).

Terrestrial plants may be exposed via root contact, and herbivorous consumers may consume the contaminants with the affected plants. Terrestrial invertebrates may incorporate contaminants by contact with contaminated soil. Wildlife exposure may occur via food-web transfer or directly via inhalation of airborne particulates or incidental ingestion during activities such as foraging, grooming or burrowing. Mercury is the only potentially volatile constituent.

Wildlife exposures to chemicals in soil via inhalation of volatile constituents or dust and dermal contact are not evaluated quantitatively in this Ecological Scoping Assessment, pursuant to the Eco-SSL guidance (USEPA, 2005).

6.1.4 Findings of Ecological Scoping Assessment

The scoping assessment identified COPECs (mercury and PCP) in soil at the dip tank and transfer pit area. The elevated concentrations of these COPECs occur in isolated hot spots within the assessment area. COPECs are selected based on their occurrence at concentrations higher than local background concentrations and above one or more Eco-SSLs. The potential for future ecological exposure to COPECs in the dip tank and transfer pit area is dependent upon the nature of site development. If the assessment area is to support commercial/industrial development, habitat may not be present to support complete ecological exposure pathways. If the site remains open space or is developed as recreational open space, then the potential for ecological exposure may exist. Assessment areas, EPCs and likely remedial actions are summarized below.

Assessment Area	COPEC	EPC (mg/kg)		Proposed Remedial Action	
		Value	Source	7.0	
1 Log Pond	None	NA	NA	None	
2 Dip Tank and Transfer Pit	Mercury	2.32	95% UCL	Hot spot removal and offsite disposal of impacted soil	
	PCP	24.4	95% UCL	None	
3 Boiler Room	None	NA	NA	None	
4 Refuse Burner	None	NA	NA	None	

Notes:

EPC = exposure point concentrations

COPEC = constituent of potential ecological concern

na = not applicable (no UCL calculated)

PCP = pentachlorophenol

UCL = upper confidence limit on mean detected concentration

Potentially complete exposure pathways exist for terrestrial receptors for soil in the hot spots in the former dip tank and transfer pit assessment area. Therefore, it is appropriate to consider hot spot removal and off-site disposal to mitigate the potential ecological exposures.

6.2 Conclusions

Potentially complete exposure pathways exist for terrestrial receptors for soil in the mercury and PCP hot spots in the former dip tank and transfer pit assessment area. Therefore, it is appropriate to consider hot spot removal and off-site disposal to mitigate the potential ecological exposures.

The potential for future ecological exposure to COPECs in the dip tank and transfer pit area is dependent upon the nature of site development. If the assessment area is to support commercial/industrial development, habitat may not be present to support complete ecological exposure pathways. If the site remains open space or is developed as recreational open space, then the potential for ecological exposure may exist.

7.0 ENGINEERING EVALUATION/COST ANALYSIS

An EE/CA is used to evaluate removal actions for effectiveness, cost, and implementability. An EE/CA requires evaluation of at least three alternatives. As PCP, petroleum hydrocarbons, and dioxin are the primary COCs that pose the greatest risk to future site receptors, removal actions were chosen to specifically mitigate exposure to these COCs.

7.1 Removal Action Alternatives

We evaluated four alternatives for this RAW. The alternatives were evaluated based on the proposed land use of Site for recreational and commercial/industrial. Currently, the Site is undeveloped. The Site is fenced and No Trespassing signs are posted along the northern and eastern sides of the Site adjacent to a residential neighborhood and Mt. Shasta Boulevard, respectively. The four alternatives include:

- 1. No Action.
- 2. Excavation and offsite disposal for unrestricted use PCP-impacted soil from the former dip tank, petroleum-impacted soil from the former boiler room and former refuse burner, and dioxin-impacted soil from the eastern and western portions of the Site would be excavated and replaced (as needed for redevelopment) with clean, imported soil.
- 3. Excavation and offsite disposal for recreational and commercial/industrial use PCP-impacted soil from the former dip tank, petroleum-impacted soil from the former boiler room and former refuse burner would be excavated and replaced (as needed for redevelopment) with clean, imported soil. A land use covenant (LUC) restricting use of the Site would be required to ensure that the land use of the Site remains recreational and/or commercial/industrial use. A LUC is described further in Section 8.8.
- 4. Consolidation and containment by capping petroleum-impacted soil would be consolidated with PCP-impacted soil on the eastern portion of the Site and capped with clean fill material, and/or site structures, pavement, and hardscapes to minimize the potential for future site users to be exposed to COCs in soil. An LUC would be required to ensure that the land use of the Site remains commercial. An operations and maintenance (O&M) agreement (OMA) with DTSC, and 5-year reviews (site inspections) performed by a qualified consultant to ensure the cap on impacted soil remains viable.

These removal action alternatives are evaluated in the following sections.

7.2 Evaluation of Removal Action Alternatives

We evaluated the four removal action alternatives with regards to the following nine criteria, as defined in 40 CFR 300.430:

- Overall protection of human health and the environment;
- Compliance with State and Federal requirements;
- Long-term effectiveness and performance;
- Reduction of toxicity, mobility, and volume;

- Short-term effectiveness:
- Implementability;
- Cost;
- Regulatory acceptance; and
- Community acceptance.

Through this process, we determined the overall effectiveness of each alternative.

7.2.1 Overall Protection of Human Health and the Environment

This criterion evaluates the ability of each of the alternatives to protect human health and the environment. The evaluation primarily focuses on post-implementation conditions, except where onsite construction has a potential to significantly impact areas offsite.

Alternative No. 1 - No Action

This alternative would not be sufficiently protective of human health under the current or future land use because no measures would be taken specifically to mitigate exposure to COCs at concentrations exceeding local background levels or applicable health risk-based screening levels. Under this alternative, trespassers could be exposed to COCs at elevated concentrations in soil at the Site through direct contact, ingestion, and inhalation of dust. This alternative may be suitable under the current inactive use if the Site is fenced and warning signage is posted regarding chemical hazards.

Alternative No. 2 - Excavation and Offsite Disposal - Unrestricted Use

Excavation and offsite disposal of PCP-, petroleum-, and dioxi-impacted soil and replacement with clean imported soil, if necessary, would provide the greatest overall protection of human health and the environment. Transportation of the impacted soil would potentially increase the risk of short-term exposure to receptors along the transportation route from airborne dust generation and spillage, but this threat could be minimized through the use of appropriate controls such as tarping of loads and route planning through less populated areas.

Alternative No. 3 - Excavation and Offsite Disposal - Recreational and Commercial/Industrial Use

Excavation and offsite disposal of PCP- and petroleum-impacted soil and replacement with clean imported soil, if necessary, would provide good overall protection of human health and the environment for the proposed recreational and commercial/industrial use of the Site. As with Alternative No. 2, transportation of PCP- and petroleum-impacted soil would potentially increase the risk of short-term exposure to receptors along the transportation route from airborne dust generation and spillage. Dioxin-impacted soil is present at the Site at concentrations that are less than DTSC screening levels for commercial/industrial use, but exceed residential screening levels, and will remain in place under this alternative. However, this alternative would also require administrative controls of the land use on the Site through an LUC in the form of a deed restriction on the title.

Alternative No. 4 - Consolidation and Containment by Capping

This alternative will provide good overall protection of human health and the environment for recreational or commercial/industrial uses in all site portions (including the capped portion) through elimination of the exposure routes to PCP and petroleum at elevated concentrations on the accessible portions of Site. However, this alternative would also require administrative controls of the land use on the capped portion through an LUC on the title and maintenance of the cap in accordance with an OMA.

7.2.2 Compliance with State and Federal Requirements

This criterion is used to evaluate whether each of the four alternatives will comply with applicable State, and/or Federal regulations. ARARs are summarized in Appendix G.

Alternative No. 1 - No action

This alternative may comply with State and/or Federal regulations under the Site's current inactive use as long as the Site is fenced and posted regarding the chemical hazard. This alternative would not comply with State and/or Federal regulations for the proposed recreational and commercial development, as users could be exposed to COCs in soil at concentrations that pose an unacceptable health risk.

Alternative No. 2 - Excavation and Offsite Disposal - Unrestricted Use

This alternative would comply with State and Federal regulations as the exposure to COC would be mitigated.

Alternative No. 3 - Excavation and Offsite Disposal – Recreational and Commercial/Industrial Use

This alternative would comply with State and Federal regulations as the exposure to COC would be mitigated; however, use of the Site would be limited on the title to recreational and commercial/industrial.

Alternative No. 4 - Consolidation and Containment by Capping

This alternative would comply with State and Federal regulations as consolidating and capping PCPand petroleum-impacted soil with clean fill and/or future structures, pavements, or hardscapes would reduce the risk of exposure to COCs at elevated concentrations in soil for future recreational and commercial/industrial use.

7.2.3 Long-term Effectiveness and Performance

This criterion is used to assess whether the alternative will provide long-term protection of human health and the environment from exposure to COCs at elevated concentrations in site soil.

Alternative No. 1 - No action

This alternative would not be effective in the long-term because site users could be exposed to COCs at elevated concentrations in the soil on the Site. This alternative could be effective in the long-term for the current inactive use, as long as fencing and signage is maintained.

Alternative No. 2 - Excavation and Offsite Disposal - Unrestricted Use

This alternative would be effective in the long-term, because removal of the impacted soil on Site to meet unrestricted use criteria would mitigate future site users' exposure to COCs at elevated concentrations in the soil.

Alternative No. 3 - Excavation and Offsite Disposal - Recreational and Commercial/Industrial Use

This alternative would be effective in the long-term if the future land use remains recreational and/or commercial/industrial. Removal of PCP- and petroleum-impacted soil from portions of the Site will meet recreational and commercial/industrial use criteria and would decrease the potential for future site users' exposure to COCs in the soil. Dioxin-impacted soil would require no further action if the future land use remains recreational and/or commercial/industrial.

Alternative No. 4 - Consolidation and Containment by Capping

This alternative would be effective in the long-term if the future land use remains recreational or commercial/industrial and the cover over the impacted soil is maintained.

7.2.4 Reduction of Toxicity, Mobility, and Volume

This criterion is used to assess the potential for each alternative to reduce the toxicity, mobility, or volume of COCs on the Site.

Alternative No. 1 - No action

This alternative would not reduce the toxicity, mobility, and/or volume of impacted soil on the Site.

Alternative No. 2 - Excavation and Offsite Disposal - Unrestricted Use

This alternative would be effective in reducing the toxicity, mobility, and volume of COCs on the Site because soil with PCP, petroleum hydrocarbons, and dioxin concentrations exceeding their respective residential screening level would be removed.

Alternative No. 3 - Excavation and Offsite Disposal – Recreational and Commercial/Industrial Use

This alternative would be effective in reducing the toxicity, mobility, and volume of COCs by removing PCP- and petroleum-impacted soil from the Site. The toxicity, mobility, and volume of soil in dioxin-impacted areas would not change.

Alternative No. 4 - Consolidation and Containment by Capping

This alternative will not reduce the volume or toxicity of COCs on the Site. However, by consolidating petroleum-impacted soil with PCP-impacted soil and capping the consolidated impacted soil on the eastern portion of the Site, the routes of exposure to PCP and petroleum hydrocarbons in that soil would be eliminated. The toxicity, mobility, and volume of dioxin-impacted soil would not change.

7.2.5 Short-term Effectiveness

This criterion evaluates the impacts of each alternative in the short term - i.e., during future redevelopment for recreational and commercial/industrial site use.

Alternative No. 1 - No action

This alternative would not be effective in the short-term if the Site is developed. This alternative would be effective in the short-term; however, if access is restricted through site fencing and the fencing and signage regarding site hazards are maintained.

Alternative No. 2 – Excavation and Offsite Disposal – Unrestricted Use

This alternative should not lead to a significantly increased short-term risk of exposure to COCs onsite for construction personnel or offsite neighboring receptors if dust control is implemented during removal. Covering the excavated soil prior to transporting it would minimize the short-term risk to offsite receptors along the transportation route.

Alternative No. 3 - Excavation and Offsite Disposal - Recreational and Commercial/Industrial Use

This alternative should not lead to a significantly increased short-term risk of exposure to COCs onsite for construction personnel or offsite neighboring receptors if dust control is implemented during removal. Covering the excavated soil prior to transporting it would minimize the short-term risk to offsite receptors along the transportation route. Additionally, as the volume of soil proposed to be excavated is less for this alternative, the potential exposure to offsite receptors should be lower than that for Alternative No. 2. The short-term effectiveness is judged to be good.

Alternative No. 4 – Consolidation and Containment by Capping

With use of proper dust control during construction of the future structures, this alternative should not lead to a short-term increase in risk for construction personnel or offsite neighboring receptors. Covering the excavated soil prior to transporting it would minimize the short-term risk to offsite receptors along the transportation route. Additionally, as the volume of soil proposed to be excavated is less for this alternative, the potential exposure to offsite receptors should be lower than that for Alternative No. 2. The short-term effectiveness is judged to be good.

7.2.6 Implementability

This criterion evaluates the ability of the future stakeholder(s) and contractors to implement the alternative.

Alternative No. 1 - No action

The implementability of this alternative is good from the standpoint that it requires no labor, materials or equipment.

Alternative No. 2 - Excavation and Offsite Disposal - Unrestricted Use

This alternative is technically implementable; however, the cost for excavation, transportation, and offsite disposal of the impacted soil would be economically infeasible.

Alternative No. 3 – Excavation and Offsite Disposal – Recreational and Commercial/Industrial Use

This alternative is technically implementable for the future stakeholder(s).

Alternative No. 4 - Consolidation and Containment by Capping

This alternative is technically implementable for the future stakeholder(s). However, opposed to Alternative 3, this alternative requires maintenance and inspection of the cap in accordance with an OMA, which is not necessary for Alternative 3 and accomplishes the same land use goal.

7.2.7 Cost

Alternative No. 1 - No action

There are no costs associated with implementing this alternative. If additional fencing and warning signage were added at the Site there would be some cost associated with installation and maintenance of those items; however, that cost would be significantly lower than the costs for Alternative Nos. 2, 3, and 4.

Alternative No. 2 - Excavation and Offsite Disposal - Unrestricted Use

This is the most costly of the four alternatives at an estimated cost of \$2,017,911. The majority of the costs for this alternative are associated with transportation and disposal of the dioxin-impacted soil. A breakdown of this estimate is included in Table 9.

Alternative No. 3 – Excavation and Offsite Disposal – Recreational and Commercial/Industrial Use

The estimated cost to implement this alternative is approximately \$167,954. The majority of the cost of this alternative is for the excavation and offsite transport of the PCP- and petroleum-impacted soil. A breakdown of this estimate is included in Table 10.

Alternative No. 4 - Consolidation and Containment by Capping

The estimated cost to implement this alternative is approximately \$71,025. The majority of the initial cost of this alternative is excavation and placement of the cap; however, an additional \$51,000 over an assumed 30-year period is associated with the long-term O&M required by this alternative. A breakdown of this estimate is included in Table 11.

7.2.8 Regulatory Acceptance

Each of the four alternatives is evaluated to determine whether it meets legal and technical standards for regulatory acceptance.

Alternative No. 1 - No Action

No action may be acceptable for continued inactive land use if the Site were secured using adequate fencing and warning signage posted regarding the chemical hazard.

Alternative No. 2 – Excavation and Offsite Disposal – Unrestricted Use

This alternative would meet legal and technical standards because it would reduce the health risk associated with exposure to COCs in site soil to acceptable levels for unrestricted land use by removing impacted soil.

Alternative No. 3 - Excavation and Offsite Disposal - Recreational and Commercial/Industrial Use

This alternative would meet legal and technical standards because it would reduce the health risk associated with exposure to COCs in site soil to acceptable levels for recreational and commercial/industrial land use by removing impacted soil exceeding these levels. Regulatory acceptance of this alternative would require an LUC in the form of a deed restriction for the area of the Site with dioxin-impacted soil.

Alternative No. 4 - Consolidation and Containment by Capping

This alternative would meet legal and technical standards and should receive regulatory acceptance by eliminating the exposure pathways and reducing the mobility of COCs in the impacted soil for future recreational and commercial/industrial site users. Regulatory acceptance of this alternative would require an LUC and long-term O&M for the cap over the dioxin impacted soil.

7.2.9 Community Acceptance

This criterion involves the evaluation of whether each of the alternatives would be acceptable to the community.

Alternative No. 1 - No Action

This alternative may not be acceptable to the community because of the perception of exposure to COCs in site soil by offsite neighbors.

Alternative No. 2 – Excavation and Offsite Disposal – Unrestricted Use

This alternative may be acceptable to the community because it would reduce the health risk associated with exposure to COCs in site soil to levels acceptable for unrestricted land use. The community may be averse to truck traffic during construction and the perception of potential exposure to COCs in airborne dust as it is being transported from the Site along public roads to a disposal facility. However, dust control during excavation, air monitoring to assess and document the effectiveness of dust control, and covering of waste loads and proper routing of truck traffic would likely help the community to accept this alternative.

Alternative No. 3 – Excavation and Offsite Disposal – Recreational and Commercial/Industrial Use

This alternative would likely be acceptable to the community because of the removal of PCP- and petroleum-impacted soil. Additionally, truck traffic and airborne dust will be significantly less than Alternative 2 as only 5% of the material proposed for removal in Alternative 2 will removed from the Site under this alternative.

Alternative No. 4 - Consolidation and Containment by Capping

This alternative would likely be acceptable to the community because PCP- and petroleum-impacted soil will be contained beneath a cap of clean soil. Additionally, there will be reduced potential for exposure to airborne COCs as a result of the capping of the dioxin-impacted soil.

7.3 Results of Removal Action Evaluation

Alternative No. 1 - "no action" is not considered to be an acceptable alternative because it would not protect human health or the environment and would not reduce the toxicity, volume, or mobility of the waste.

Alternative No. 2 - excavation of COC-impacted soil to levels acceptable for unrestricted land use and offsite disposal of the soil would be the most protective of human health and the environment and would reduce the volume of the COCs in site soil to the greatest degree and would, therefore, likely be acceptable to the DTSC and the community. However, the cost of this alternative is the highest and therefore likely to be economically infeasible. Therefore, this alternative is rejected.

Alternative No. 3 - excavation of PCP- and petroleum-impacted soil to levels acceptable for commercial/industrial land use and offsite disposal of the soil would provide protection of human health and the environment by eliminating the routes of exposure to future recreational and commercial/industrial site users. Dioxin-impacted soil would require no further action if the future land use remains

recreational and/or commercial/industrial. This alternative can be performed in compliance with State and Federal requirements. Short-term exposure to construction personnel and offsite neighbors can be minimized through the implementation of dust controls (e.g., water spray of disturbed areas). Administrative control of land use through an LUC on the Site would ensure reliable protection of human health on a long-term basis. This alternative would be implemented with DTSC oversight; therefore, regulatory acceptance is anticipated.

Alternative No. 4 – consolidating petroleum-impacted soil onto the eastern portion of the Site with the PCP-impacted soil and capping it with clean fill and/or future structures, pavements, or hardscapes for commercial/industrial use would provide overall protection of human health and the environment by eliminating the routes of exposure to future site users. Dioxin-impacted soil would require no further action if the future land use remains recreational and/or commercial/industrial. This alternative can be performed in compliance with State and Federal requirements. Short-term exposure to construction personnel and offsite neighbors can be minimized through the implementation of dust controls (e.g., water spray of disturbed areas). Administrative control of land use through an LUC and maintenance of the cap in accordance with an OMA would ensure reliable protection of human health on a long-term basis. This alternative would be implemented with DTSC oversight; therefore, regulatory acceptance is anticipated.

7.4 Recommended Remedy

The recommended remedy is Alternative No. 3 - excavation of PCP- and petroleum-impacted soil to levels acceptable for commercial/industrial land use and offsite disposal of the soil. Details pertaining to mitigation measures to implement this remedy alternative are described in Section 8.0.

8.0 MITIGATION MEASURES

The removal action alternative to be implemented at the Site to mitigate exposure to COCs in soil will consist of excavation and offsite disposal of PCP- and petroleum-impacted soil and replacement with clean fill. This mitigation measure will reduce the volume and toxicity of COCs at the Site making the Site suitable for the planned recreational and commercial use. However, the Site will not be acceptable for unrestricted use.

8.1 Remedial Design Implementation Plan

A Remedial Design Implementation Plan (RDIP) or its equivalent will need to be submitted and approved by the DTSC prior to implementing the selected alternative. The RDIP should, at a minimum, include the following:

- Contractor's names and contact information;
- Transportation Plan;
- Health and Safety Plan
- Quality Assurance/Quality Control
- Sample Analysis Plan for confirmation sampling;
- · design plans; and
- copies of all permits.

8.2 Excavating Impacted Soil

Soil from the hot spots identified on Figures 2, 4-1, 4-1, 5-1, and listed in the table below will be excavated and stockpiled onsite prior to offsite disposal.

Hot Spot Locations and Quantity Estimates					
Assessment Area	COC (Highest Concentration)	Area (sf)	Average Depth (ft)	Volume (cy)	
Former Dip Tank and Transfer Pit	PCP (150 mg/kg)	525	2	39	
Former Dip Tank and Transfer Pit	PCP (150 mg/kg)	50	8	15	
Former Dip Tank and Transfer Pit	PCP (32 mg/kg)	1,950	2	144	
Former Dip Tank and Transfer Pit	PCP (9 mg/kg)	265	1.5	15	
Former Dip Tank and Transfer Pit	DRO (47,000 mg/kg)	50	1	2	
Former Boiler Room	DRO (840 mg/kg)	200	1	7	
Former Boiler Room	DRO (1,600 mg/kg)	200	2	15	
Former Boiler Room	DRO (5,000 mg/kg) ORO (14,000 mg/kg)	170	5	31	
Former Refuse Burner	DRO (1,300 mg/kg)	350	8	104	
Former Refuse Burner	DRO (810 mg/kg)	50	1	2	

8.3 Offsite Disposal of Impacted Soil

Excavated soil should be segregated in stockpiles and characterized as summarized in Section 10.4 and 10.5. The waste material will be profiled and landfill approval will be obtained before any excavated materials are hauled offsite. Final determination of the landfill used for disposal will be based on approval from the landfill of the waste stream and cost effectiveness of that facility.

8.4 Backfill Material

Excavated areas should be backfilled with clean soil from other areas of the Site or from an approved offsite source. If backfill material is used from an offsite source, it should be certified clean per the DTSCs *Clean Imported Fill Material* Information Advisory.

8.5 Hardscape and Structures

There are currently no hardscape or structures planned for the Site, but the anticipated future use for a community park and commercial use suggest construction of roads, asphalt parking lots, and buildings that may cover portions of the Site.

8.6 Landscaping

A landscaping plan has not been developed for the Site, but the anticipated future use for a community park and commercial use suggest landscaping such as sod, bark, or other materials may be used to cover potions of the Site.

8.7 Utilities

Utilities are not currently proposed for the Site but are likely needed for the anticipated future use. Utility corridors through impacted soil (if any) should be backfilled with clean fill.

8.8 Removal Action Completion Report

A Removal Action Completion Report (RACR) will be prepared and submitted to the DTSC upon completion of the removal action. The RACR will document compliance with this RAW, any deviations from the plan described herein, present the results of confirmation soil sampling and analysis, and document the consolidation and capping of the excavated, COC-impacted soil. The RACR shall contain the following information:

- A description of field activities completed and justifications for deviations from the RAW;
- As-built drawings showing excavation location and final grade;
- Copies of all permits;
- A summary of implementation activities;
- Schedule:

- Description of excavation area with depth and volume figures illustrating the location of confirmation sampling;
- Tabulated confirmation sampling results;
- Contaminated soil disposal location;
- Photograph log during the implementation;
- Site restoration activities;
- Backfill soil borrow source and location;
- Backfill soil quantities and analytical data;
- Statistical analysis of confirmation results to demonstrate whether the remedial action objectives have been met;
- Conclusions and recommendations associated with the goals and objectives of the RAW; and
- Identify any remaining areas of contamination and planned action or monitoring requirements.

The RACR should also contain the following on a compact disk attachment to the final report:

- Field notes;
- laboratory data sheets; and
- copies of the disposal manifests.

8.9 LUC

The selected alternative will not render the Site suitable for unrestricted land uses because soil containing COCs at concentrations exceeding residential land use screening levels, but less than commercial/industrial screening levels, will remain on the Site. Therefore, recording of an LUC and preparation of a Soil Management Plan will be required.

The LUC will record which COCs are present on the Site and the types of land uses that are allowed. The LUC will recognize that the proposed recreational and commercial/industrial land use is compatible and is acceptable from a health risk standpoint because of the types of activities that site occupants will undertake on the Site should not cause them to be exposed to the COCs. It will state that unrestricted land uses (e.g., residential, schools, daycare, hospital, senior care, etc.) will not be allowed on the Site. The LUC will also recognize that drilling for water, oil and gas is prohibited.

The LUC will be prepared consistent with the DTSC policy and finalized and recorded after the removal action is complete and before the Site is certified by DTSC. The LUC will run with the land and stay in effect as long as the identified COCs limit use of the property and until terminated by DTSC. Pursuant to Section 67391.1 of Title 22, Division 4.5, Chapter 39, CCR, the project proponent will pay all costs for DTSC oversight associated with administration of the LUCs. The DTSC has the authority to require

modification or removal of any land improvements placed in violation of the restrictions. Violation of the LUC will be ground for DTSC to file civil or criminal actions as provided by law.

The Soil Management Plan will provide guidelines for proper handling of soil for any potential future excavation. The Soil Management Plan will document where COC-impacted soil is present on the Site and the presence of any cover materials over impacted soil.

9.0 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

Previous investigations at the Site indicate the presence of PCP- and petroleum-impacted soil exceeding the PALs for the Site. The most effective remedial action has been determined to be removal consisting of soil excavation and offsite disposal. This section discusses the ARARs for the proposed soil excavation and offsite disposal.

9.1 Summary of Applicable State and Federal ARARs

Applicable requirements are those cleanup standards, standards of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under Federal or State law that specifically apply to cleanup at a site. The process for determining applicable standards is set forth in Section 121(d) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). In part, CERCLA states that the more stringent of State or Federal requirements will apply to cleanup sites. Typically, California requirements are more stringent than Federal requirements.

Relevant and appropriate requirements are those cleanup standards, standards of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under Federal or State law that, while not applicable, address problems or circumstances similar to those found where the proposed removal action will be performed, and are well suited to the conditions of the cleanup site. Requirements that are determined to not be legally applicable are evaluated to determine whether they are relevant and appropriate. A requirement must be both relevant and appropriate to be an ARAR. Criteria for determining relevance and appropriateness are listed in Part 40, Code of Federal Regulation (CFR) Section 300.400(g)(2).

According to CERCLA ARAR guidance (USEPA, 1988), requirements may be "applicable" or "relevant and appropriate," but not both. ARARs are identified on a site-specific basis, using a two-part analysis to determine first if a requirement is applicable, and then, if not applicable, whether it is both relevant and appropriate. Based on CERCLA ARAR guidance, an ARAR qualifies as a State ARAR if it meets the following requirements:

- It is a State law;
- It is an environmental, or facility siting law;
- It is promulgated, and thus generally applicable and legally enforceable;
- It is substantive rather than procedural or administrative;
- It is more stringent than the Federal requirement;
- It is identified in a timely manner; and
- It is consistently applied.

9.2 ARARs for Soil Excavation and Offsite Disposal

9.2.1 Public Participation

California Health and Safety Code Section 2535D.1.5 provides for a public notification process. Public noticing of the mitigation measures will be provided to responsible agencies, public officials, and surrounding property owners. The RAW should be made available for public review and comment.

9.2.2 California Environmental Quality Act (CEQA)

Prior to conducting the site remediation activities all approvals associated with the California Environmental Quality Act (CEQA) will be obtained including biological resource and cultural resource approvals.

9.2.3 Notifications for Property Transfers

This RAW was prepared as a reference for the future Site owner and/or developer. During the property transfer process, the current (and/or future owner) are required to disclose if any hazardous materials exist onsite. Specifically, under Health and Safety Code Section 25359.7, any owner of a non-residential property who knows, or has reasonable cause to believe that hazardous materials exist on or beneath a property, must disclose that information prior to the sale of the property.

9.2.4 Hazardous Waste Management

The excavated soil will be stockpiled onsite and characterized prior to offsite disposal. The soil will be temporarily stockpiled on the existing hardened soil surface or on one of the relic concrete slabs if feasible, and covered with plastic sheeting to minimize run-off and dust generation. A single 4-part composite sample will be obtained from each stockpile and analyzed for PCP, metals, DRO, and ORO, as appropriate based on historical analytical results from soil in the excavated area. Where the total or Waste Extraction Test (WET)-soluble stockpile sample concentrations do not exceed California hazardous waste thresholds, the soil will be transported under non-hazardous manifest to a licensed Class II landfill facility. Where the total or WET soluble stockpile sample concentrations exceed California- or Resource Conservation and Recovery Act (RCRA)-hazardous waste thresholds, the soil will be transported under Uniform Hazardous Waste Manifest to a licensed Class I landfill facility or (if necessary) to an out of state disposal or incineration facility.

If any soil leaving the Site is classified as hazardous waste, the City will be required to obtain a temporary identification number for this action. Persons who generate, transport or offer for transport, treat, store, or dispose of hazardous waste generally must have an Identification (ID) Number, which is used to identify the hazardous waste handler and to track the waste from its point of origin to its final disposal ("From Cradle to Grave"). Instruction on how to obtain a temporary identification number may be obtained by visiting the DTSC website at www.dtsc.ca.gov/IDManifest/index.cfm#identification.

Compliance with DTSC requirements for hazardous waste generation, temporary onsite storage, transportation and disposal is required. Within 90 days of its generation, hazardous waste soil must be transported by a registered hazardous waste hauler under Uniform Hazardous Waste Manifest to the designated offsite disposal facility.

9.2.5 Siskiyou County Air Pollution Control District

Particulate matter emissions are subject to the Siskiyou County Air Pollution Control District (SCAPCD) rules and enforcement. All fieldwork conducted pursuant to this RAW should be in compliance with SCAPCD requirements. Compliance may in include that portions of the Site that will be disturbed by grading and construction equipment should be thoroughly wetted in advance of disturbing activities. Then, during grading and construction, additional water should be applied to control dust. An air monitoring plan should be developed prior to beginning excavation at the Site.

9.2.6 Health and Safety Plan

A health and safety plan (HSP) is required for the project by the Occupational Safety and Health Administration (OSHA) under Title 29 CFR 1920.120, or by California Occupational Safety and Health Administration (Cal-OSHA) under Title 8 California Code of Regulations (CCR) Sections 5192 and 3203. The basic elements of a HSP should include:

- Introduction
- Administrative requirements/controls
- Hazard and control analysis
- General health and safety requirements
- Personal protective equipment
- Decontamination
- Emergency response procedures
- Plan approval

9.2.7 Contractor's Licensing and Certification Requirements

A contractor performing the excavation, stockpiling, and loading of impacted soil is not required to have licensing or certification as a hazardous substances removal contractor (A-HAZ Contractor), but should have appropriate health and safety awareness training regarding the COCs for its onsite workers. The contractor hauling the soil to the disposal facility will be required to have A-HAZ licensing if any of the waste is profiled as hazardous waste.

9.2.8 Storm Water Pollution Prevention Plan

Because of necessary road improvements and presence of surface water at the Site, a Storm Water Pollution Prevention Plan (SWPPP) may be required for this project. A SWPPP should be prepared

prior to the start of grading onsite. General National Pollution Discharge Elimination System requirements for storm water pollution prevention should be followed and mitigation measures implemented including runoff control.

9.2.9 Soil Transportation Plan

A soil transportation plan for offsite disposal of impacted soil and for imported of clean fill will need to be prepared for the removal action. The waste material will be profiled and landfill approval will be obtained before any excavated materials are hauled offsite. Final determination of the landfill used for disposal will be based on approval from the landfill of the waste stream and cost effectiveness of that facility. Once the disposal facility is selected, copies of waste profile reports used to secure disposal permission from the landfill will be provided to DTSC. In addition, compliance with the land disposal restrictions and land ban requirements for hazardous wastes will be documented and provided to DTSC once it is determined which disposal facility will be used.

9.2.10 Endangered Species Act

No special-status species have been formally identified at the Site, but several species were identified that have high to medium potential to occur on the Site. An evaluation of endangered species is a task of the project CEQA review that should be completed prior to development.

10.0 REMOVAL ACTION IMPLEMENTATION

This section describes the removal action to be implemented for the selected remedial alternative – excavation and offsite disposal of PCP-and petroleum-impacted soil and replacement with clean fill.

10.1 Scoping Meeting

Prior to the start of COC-impacted soil removal, a scoping meeting will be held to discuss the removal action, airborne dust mitigation and monitoring, health and safety, and project scheduling. Attendees at the scoping meeting should include representatives of the contractor and subcontractors performing the construction; ownership group personnel; representatives from the City of Mt. Shasta Planning Department, City of Mt. Shasta/Siskiyou County construction inspectors; and DTSC representatives.

10.2 Permits

It is our understanding that no special permits are required for the project. If any applicable permits that are found to be required should be obtained and kept on-hand prior to the implementation of the removal action.

10.3 Work Area Preparation

COC-impacted soil hot spots that will be removed should be marked with white paint or stakes prior to excavation. The markings will be used to guide the excavation contractor and to delineate areas of excavation for utility clearance. The contractor should call Underground Service Alert at 800.227.2600 at least 48 hours prior to the start of excavation to mark the locations of utilities to determine if any are within the excavation areas.

The contractor should establish a construction staging area, site ingress and egress points, designated routes for construction traffic, and take measures to prevent unauthorized and unnecessary access to the Site prior to the start of construction. Track-out, dust control, and air monitoring measures should also be implemented.

The Site is fenced, but additional security measures should be taken, if necessary, to restrict access from trespassers when work is not being performed. Signs should be posted at the gate(s) instructing visitors and contractors of the health and safety requirements prior to entering the Site.

10.4 Excavation Methodology

The excavation of contaminated soil will likely be performed with an excavator and a loader. The planned excavation depths are between 1 and 8 feet. The limits of the excavation areas will be determined using historical soil sample analytical data and conditions encountered in the initial excavations, as shown on Figure 2, and more detailed excavation areas on Figures 3-1, 4-1, and 5-1.

10.4.1 Decontamination Area

Entry to contaminated areas will be limited to only authorized personnel and equipment to avoid unnecessary exposure and related transfer of contaminants. Trucks that are used for transporting excavated soil for offsite disposal will not require decontamination because they will not be allowed access to the contaminated areas. Equipment will be decontaminated in a designated area before leaving the Site.

All equipment and trucks that come in contact with potentially contaminated soil or water will be decontaminated to assure the quality of samples collected and/or to avoid cross contamination. Disposable equipment intended for one time use will not be decontaminated, but will be packaged for appropriate disposal. Decontamination will occur prior to and after each designated use of a piece of equipment or truck. All non-disposable sampling equipment used will be decontaminated using the following procedures:

- Non-phosphate detergent and tap water wash, using a brush if necessary.
- Tap water rinse.
- Initial deionized/distilled water rinse.
- Final deionized/distilled water rinse.

Following completed excavation, the backhoe will be dry-decontaminated with brooms, brushes, and/or towels on top of plastic sheeting at a designated decontamination area. Clean bulky equipment will be stored on plastic sheeting in uncontaminated areas. Cleaned small equipment will be stored in plastic bags. Materials to be stored more than a few hours will also be covered. Water used for decontamination purposes will be added to the soil stockpiles for offsite disposal.

10.4.2 Soil Staging and Storage Operations

The soil staging process will be monitored to ensure excessive dust is not created. As soil is excavated, it will be temporarily stored at staging areas onsite until offsite transportation and disposal are available. At the designated staging areas, the excavated soil will be placed on the existing hardened soil surface, and covered with plastic sheeting to minimize run-off and dust generation. The existing surface soil will be scraped clean during subsequent loading of the temporary stockpiles. The perimeter of the covered stockpiles will be bermed with straw wattles to minimize potential run-off.

The temporary onsite storage of excavated soil wastes will be secured and properly labeled with hazardous waste signs until offsite transportation and disposal occur. In no case will the waste storage last longer than 90 days after generation.

10.4.3 Soil Segregation Operations

Prior to stockpiling/staging, the excavated soil will be segregated to the extent possible to minimize the mixture of hazardous and non-hazardous soil. Also, this segregation process will likely minimize the amount of hazardous waste soil generated and its associated disposal cost. Soil segregation will be based upon criteria for hazardous and non-hazardous waste soil relative to historical soil sample concentrations. Specifically, PCP- and petroleum-impacted soil should be stockpiled separately for characterization. Additionally, PCP-impacted soil from the southern end of the dip tank (locations ODT-3 and OM-10) should be segregated and stockpiled separately for characterization because PCP detected in soil from these locations significantly exceeds the Total Threshold Limit Concentration (TTLC) of 17 mg/kg and could be a hazardous waste.

We estimate that up to 15% of the excavated soil (roughly 54 cubic yards or 75 tons) will require offsite landfill disposal as a California- or RCRA- hazardous waste and will be transported to a licensed Class I landfill or (if necessary) to an out of state disposal or incineration facility. The remaining excavated soil (roughly 320 cubic yards or 446 tons) is anticipated to be non-hazardous soil will be transported to a licensed Class II landfill.

10.5 Field Documentation

Soil excavation and offsite removal be overseen by a qualified environmental consultant. Field logbooks will document where, when, how, and from whom any vital project information was obtained. Logbook entries will be complete and accurate enough to permit reconstruction of field activities. The supervising consultant responsible for oversight will prepare and maintain daily field logs that, at minimum, document:

- onsite health and safety tailgate meetings;
- personnel onsite;
- offsite visitor inquiries;
- activities performed that day;
- air monitoring equipment, procedures, and locations;
- airborne dust observations;
- quantity of impacted soils (in terms of California- or RCRA-hazardous wastes, and non-hazardous waste) excavated;
- quantity of impacted soils temporarily stored onsite;
- quantity of excavated soils in truckloads transported offsite;
- names of waste transporters and proposed disposal facilities;
- copies or numbers of manifests or other shipping documents (such as bill of lading) for waste shipments;

- quantity of import fill materials in truckloads;
- deviations from the removal action implementation plan and record of communication with project stakeholders and the DTSC:
- confirmation soil samples collected; and
- other pertinent information.

As applicable, photographs will be taken of each excavation and stockpile location and other areas of interest, as applicable. The time, date, location, weather conditions, and a description of the subject photograph(s) should be recorded in the daily field logbook.

10.6 Waste Profile and Confirmation Soil Sampling and Analysis

10.6.1 Waste Profile Samples

Waste profile samples will be collected from the soil stockpiles and analyzed for COCs and any other constituents specified by the accepting disposal facilities. One four-part composite sample will be collected for each <100 yd³ soil stockpile. The individual discrete samples will be collected with a clean trowel or hand auger and placed into a one-gallon Ziploc bag and homogenized. A portion of the homogenized sample will then be placed into laboratory-provided sampling jars, properly labeled, and placed in a chilled cooler for transport to the laboratory under chain-of-custody protocol.

10.6.2 Confirmation Samples

Confirmation soil samples will be collected and analyzed to confirm that concentrations of COC in the soil remaining in place do not exceed PALs. If COC concentrations in confirmation soil samples exceed PALs, additional soil may be excavated from that area. Confirmation soil samples will be collected from the base of each excavation on a grid interval appropriate to the size of the excavation. A minimum grid interval of 20 feet (one sample per 400 square feet) will be used for hotspot excavations. Sidewall confirmation soil samples will be collected at similar appropriate intervals based on the size of each excavation. Confirmation soil samples will be analyzed for PCP by USEPA Test Method 8270 and DRO and ORO by USEPA Test Method 8015B, as appropriate per area. Sample handling will follow standard chain-of-custody protocol.

10.7 Airborne Dust Control and Air Monitoring

Airborne dust control measures will be implemented during excavation and soil consolidation. Airborne dust control measures will consist of applying a water spray to soil to be excavated and as soil is being placed in the consolidation area.

Real-time airborne dust monitoring will be performed to demonstrate that generation of airborne dust is minimized during earthwork, and to establish a negative exposure condition for site workers and offsite neighbors. Prevailing wind at the Site varies, so we recommend verifying local conditions and

wind direction anticipated for that time of year prior to construction. Daily meteorological conditions such as wind direction and approximate speed will be monitored, recorded, and used to determine monitoring station placement. Up to three air monitoring stations equipped with real-time particulate counters (e.g. pDR-1200 monitors) will be deployed (one upwind and two downwind) and checked hourly. Daily perimeter air samples will also be collected and submitted to an American Industrial Hygiene Association-accredited laboratory for arsenic and lead analysis using National Institute for Occupational Safety and Health Methods 7300/7303 specifying Mass Spectrophotometry to achieve a low limit of detection.

11.0 COMMUNITY PROFILE

This community profile summarizes our understanding of the level of awareness and interest in the Site by the community and provides a list of key contacts and provides recommendations for potential additional public participation efforts. Most of the basic site information required in the community profile, including a description of the Site and surrounding land uses and the proximity to residential areas, schools, daycare centers and other sensitive receptors, is provided in Sections 1.0 and 2.0.

11.1 Demographics

United States Census Bureau census 2010 data for Mt. Shasta shows that Mt. Shasta has a predominantly Caucasian population with approximately 86.3% of the city population listed as Caucasian, 7.0% Hispanic, 0.7% Native American, 1.6% Asian, 1% African American, and 3% other/two or more races.

The economy in Mt. Shasta and the surrounding area is heavily dependent on the timber, agricultural, recreational, and travel industries. Historically, the main economic industry has been timber, which has diminished in recent years while recreation and tourism in the area are growing. Over 60 percent of the land in Siskiyou County is in public ownership. Mt. Shasta attracts recreational users in both the summer and winter months for fishing, hunting, camping, hiking, and skiing activities (Mt. Shasta, 2007).

According to the 2016 American Community Survey data provided though the US Census Bureau, most of the jobs in Mt. Shasta are in the retail industry followed by education services and health care. The median household income in Mt. Shasta is \$34,813. Approximately 29.5% of the Mt. Shasta population reportedly lives below the poverty line (US Census Bureau, 2016).

11.2 Local Awareness and Interest

The City maintains a website with environmental and planning documents for The Landing mixed-use development project, which the Site is a part of. At the Landing - New Mill Section, which is similar to the Site, a public review period for a RAW generated no comments or apparent public interest. There is currently no known public interest in the Site; however, the Site is located adjacent to a residential area which may have some interest when the removal action begins.

11.3 Key Contacts

Key contacts for the Site with respect to providing information to the public include:

- Duane White, DTSC Engineer and Site Project Manager (916)-255-3585;
- USEPA, EPA Brownfields Project Officer (415) 972-3531;
- Bruce Pope, City of Mt. Shasta, City Manager and Project Director (530) 926-7510.

11.4 Key Issues and Concerns

We anticipate that the public's greatest concern during construction will be airborne dust and noise. As described above, dust will be controlled by use of water spray during soil disturbing activities and during placement of clean fill, and air will be monitored to document the effectiveness of that control. Noise will be limited to increased truck and equipment traffic during an approximate 30-day period. Work hours will be limited to 8AM to 5PM on a daily basis. Review of a project fact sheet and the RAW during the public notice and review period should provide answers to questions regarding dust control and noise.

11.5 Recommended Public Participation

Public participation efforts will include public notification and public review of and comment on the Final RAW. The DTSC will approve a mailing list that includes nearby residents and businesses, potentially interested organizations and individuals, as well as local public officials. A public meeting may also be necessary to describe the conditions at the Site and the planned removal action depending on the level of community concern.

The Final RAW will be available for public review at the DTSC offices and at least one of the following local public repositories:

- Mt. Shasta Public Library 515 E. Alma Street, Mt. Shasta;
- City of Mt. Shasta Planning Department 305 N. Mt. Shasta Boulevard, Mt. Shasta;
- Siskiyou County Environmental Health Division 806 South Main Street, Yreka; and
- Siskiyou County Library 719 Fourth Street, Yreka.

12.0 PROJECT SCHEDULE AND REPORT OF COMPLETION

12.1 Project Schedule

Enter into VCA Agreement with DTSC	Summer/Fall 2018
Public notice of availability of RAW for public review .	Summer/Fall 2018
30-day public comment period	Summer/Fall 2018
DTSC issues responsiveness summary	Fall 2018/Winter 2019
Final RAW approval	Fall 2018/Winter 2019
Begin Construction	Unknown
Complete Construction	
Submit draft Completion Report	

12.2 Report of Completion

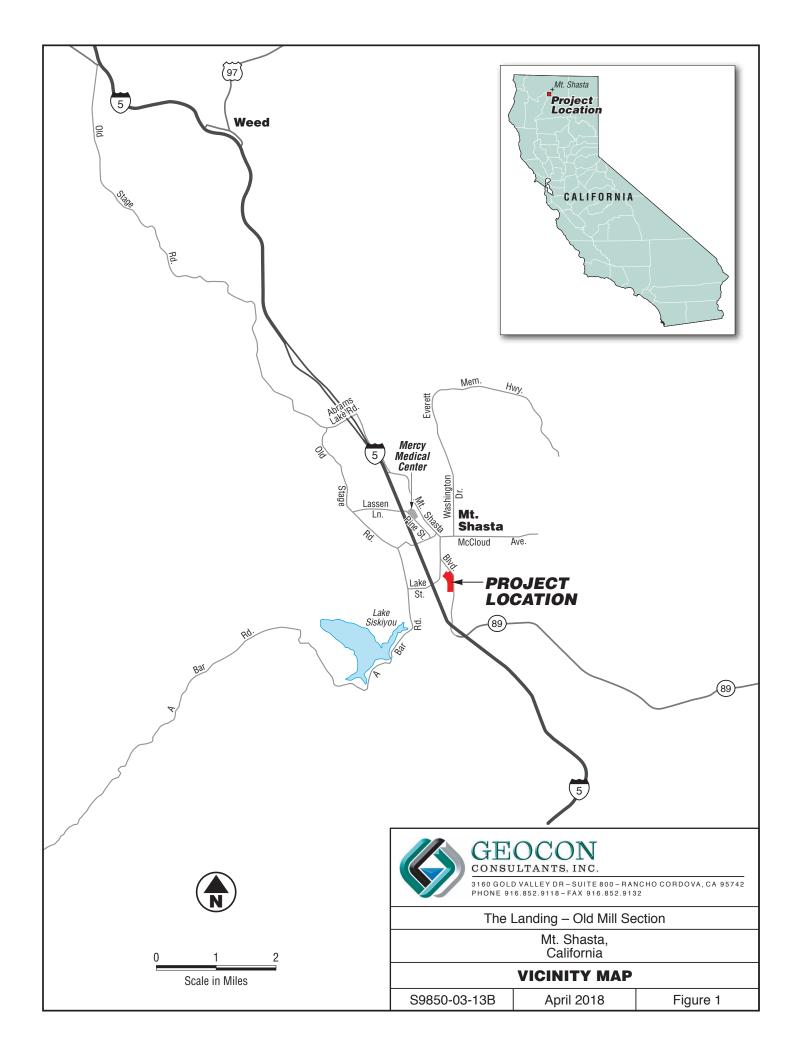
As described in Section 8.5, a draft RACR will be prepared and submitted to DTSC approximately 30 days following the completion of the removal action. The RACR shall document whether or not the RAO stated in the DTSC-approved RAW was met.

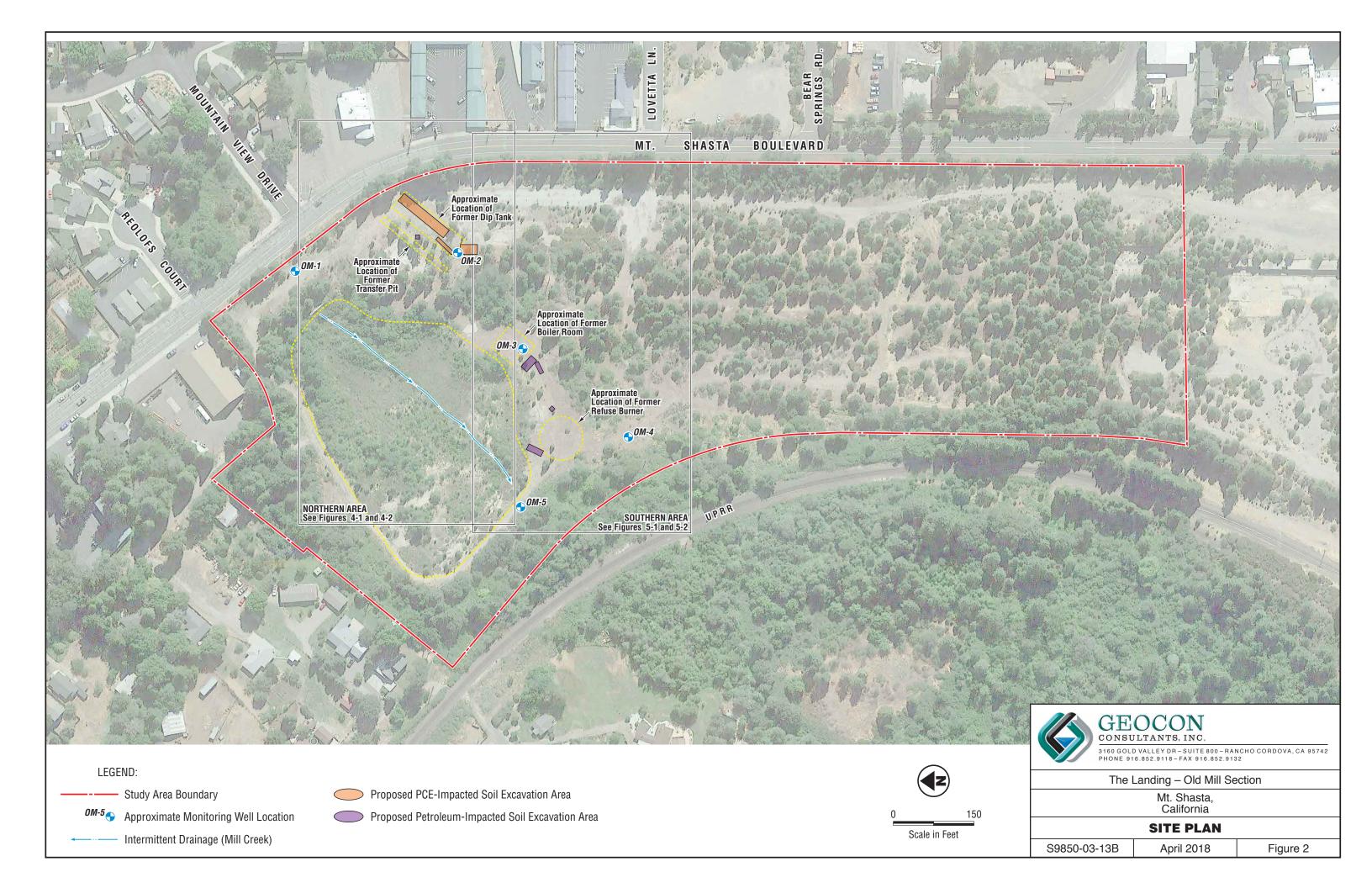
13.0 LIMITATIONS

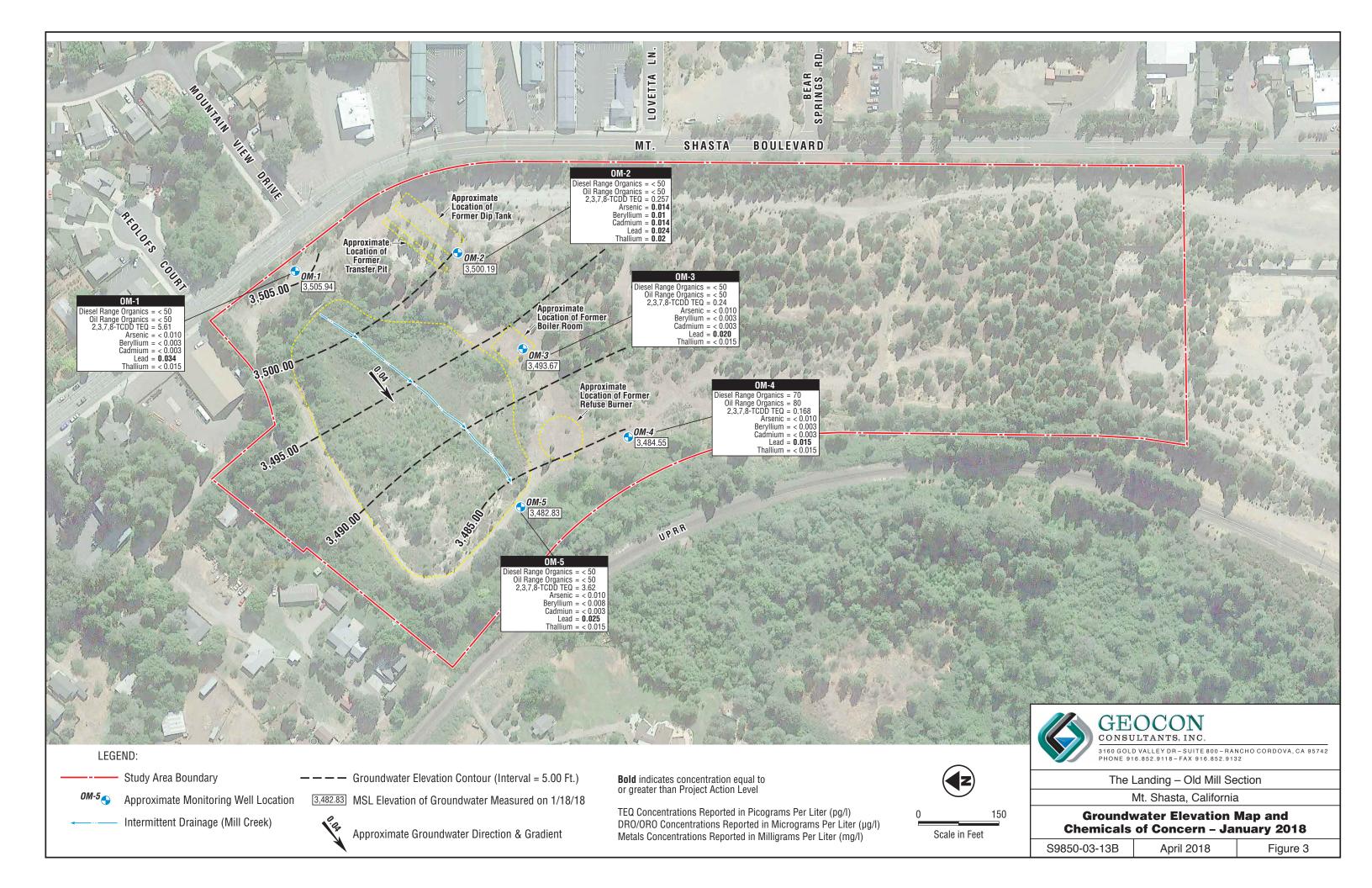
This RAW has been prepared solely for the City of Mt. Shasta and the DTSC, in consideration of their requirements. Other parties may rely on the findings and conclusions of the RAW for informational purposes only. However, the City and other parties who may rely on the findings and conclusions of the RAW should recognize that this RAW does not constitute a complete set of construction plans or specifications and should not be construed as such. The recommendations as presented in this RAW are predicated on the results of the limited sampling and laboratory testing performed.

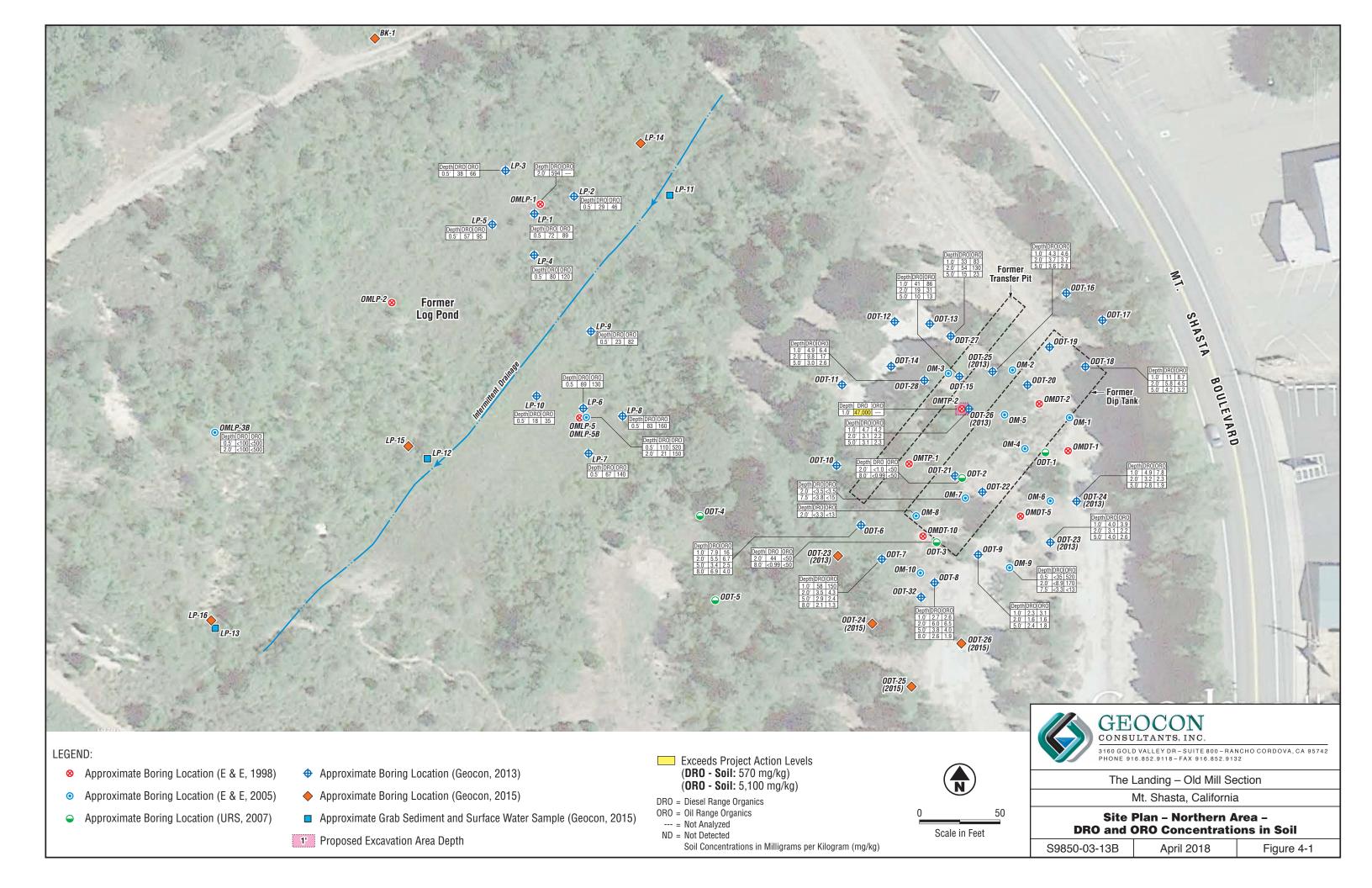
The information contained herein is only valid as of the date of the RAW and may require updating to reflect changes to conditions at the mine. Therefore, the RAW should only be deemed conclusive with respect to the information presented. No guarantee of the results of the study used to generate the RAW is implied within the intent of this RAW or any subsequent report, correspondence or consultation, either express or implied. The services performed were conducted in accordance with the local standard of care in the geographic region at the time the services were rendered.

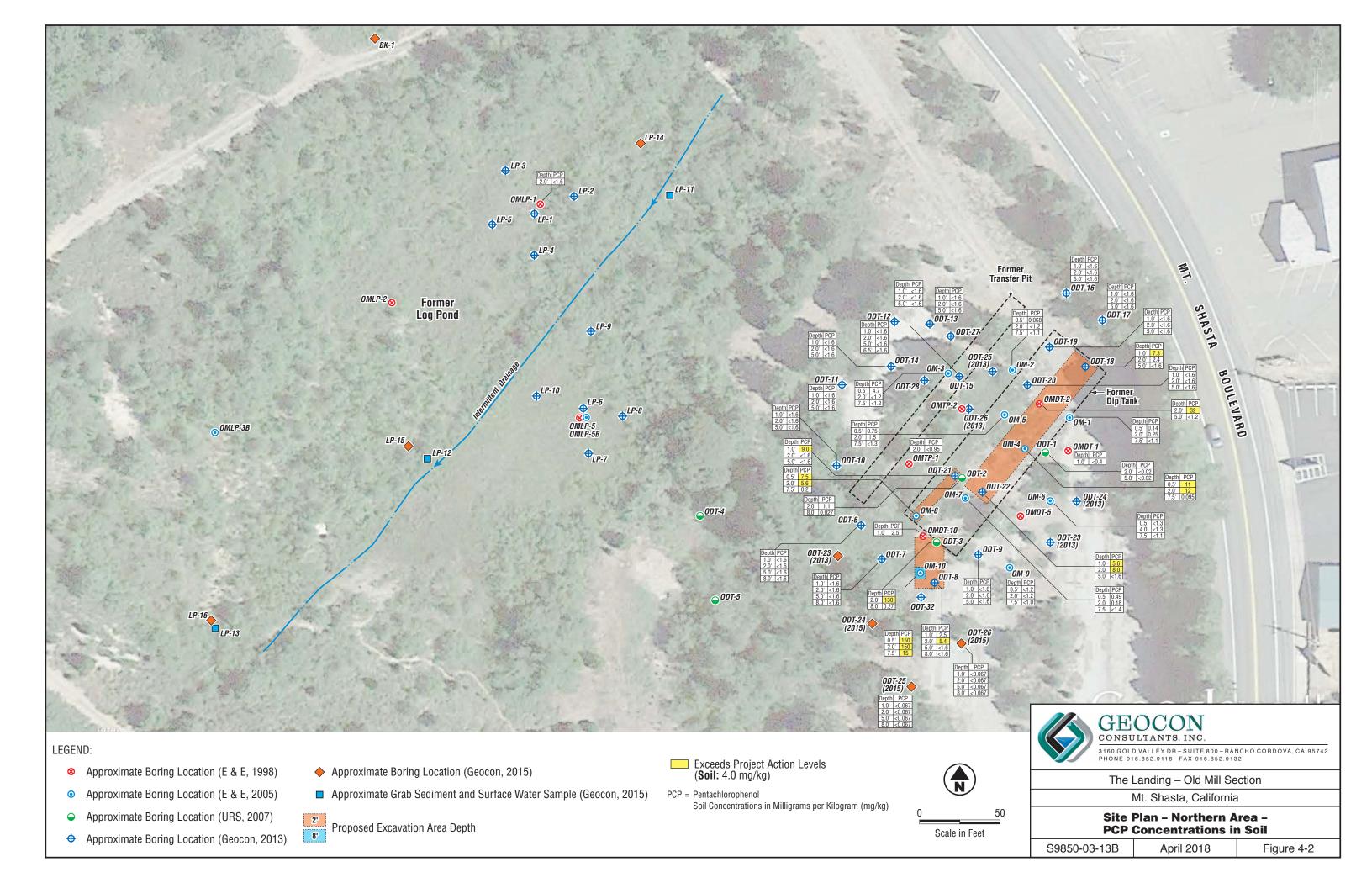
14.0 REFERENCES

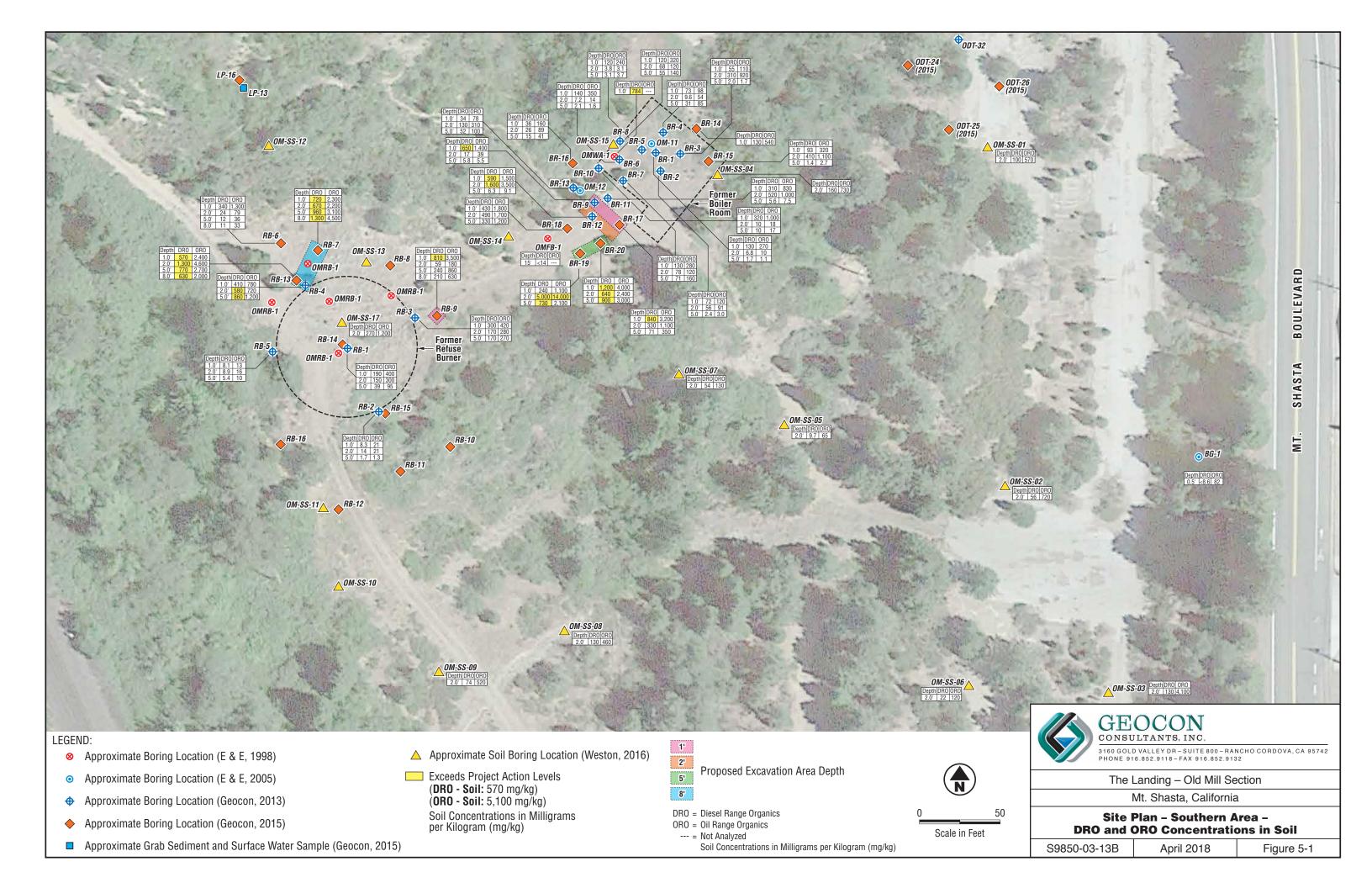

- Agency for Toxic Substances and Disease Registry, *Toxicological Profile, Total Petroleum Hydrocarbons (TPH)*, U.S. Department of Health and Human Services, 1999.
- Agency for Toxic Substances and Disease Registry, *Toxicological Profile: Pentachlorophenol*. U.S. Department of Health and Human Services, 2001.
- Bain, J. L., and Engelhardt, M., *Introduction to Probability and Mathematical Statistics*. Second Edition, Duxbury Press, California, 1992.
- California Geological Survey, Wagner, D. L. and Saucedo, G. J., *Geologic Map of the Weed Quadrangle*, 1:250,000 scale, 1987.
- Central Valley Regional Water Quality Control Board, Water Quality Control Plan for the Sacramento River and San Joaquin River Basins, Fourth Edition, revised October 2011.
- DTSC, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996, Accessed online at www.dtsc.ca.gov/assessingrisk/eco2.cfm.
- DTSC, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part B: Scoping Assessment. State of California Environmental Protection Agency, Department of Toxic Substances Control, 1996.
- DTSC, Selecting Inorganic Constituents as Chemical of Potential Concern at Hazardous Waste Sites and Permitted Facilities, Final Policy. California Environmental Protection Agency, Department of Toxic Substances Control, Human and Ecological Risk Division, February 1997.
- DTSC, Information Advisory Clean Imported Fill Material, October 2001.
- DTSC, Arsenic Strategies, Determination of Arsenic Remediation, Development of Arsenic Cleanup Goals for Proposed and Existing School Sites, March 21, 2007.
- DTSC, User's Guide to LeadSpread 8 and Recommendations for Evaluation of Lead Exposures in Adults. Human and Ecological Risk Office, September, 2011, available online at https://www.dtsc.ca.gov/AssessingRisk/LeadSpread8.cfm.
- DTSC, Human Health Risk Assessment Note No. 1, Human and Ecological Risk Office, Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities, September 30, 2014, available online at https://www.dtsc.ca.gov/assessingrisk/humanrisk2.cfm.
- DTSC, Lead Risk Assessment Spreadsheet Version 8, 2015, accessed at http://www.dtsc.ca.gov/AssessingRisk/leadspread8.cfm.
- DTSC, *Human Health Risk Assessment Note No. 4.* Human and Ecological Risk Office, *Screening Level Human Health Risk Assessments*, October 6, 2015, available online at https://www.dtsc.ca.gov/assessingrisk/humanrisk2.cfm.
- DTSC, Preliminary Endangerment Assessment Guidance Manual, October 2015.
- DTSC, Human Health Risk Assessment Note No. 6, Human and Ecological Risk Office, Recommended Methodology for Evaluating Site-Specific Arsenic Bioavailability in

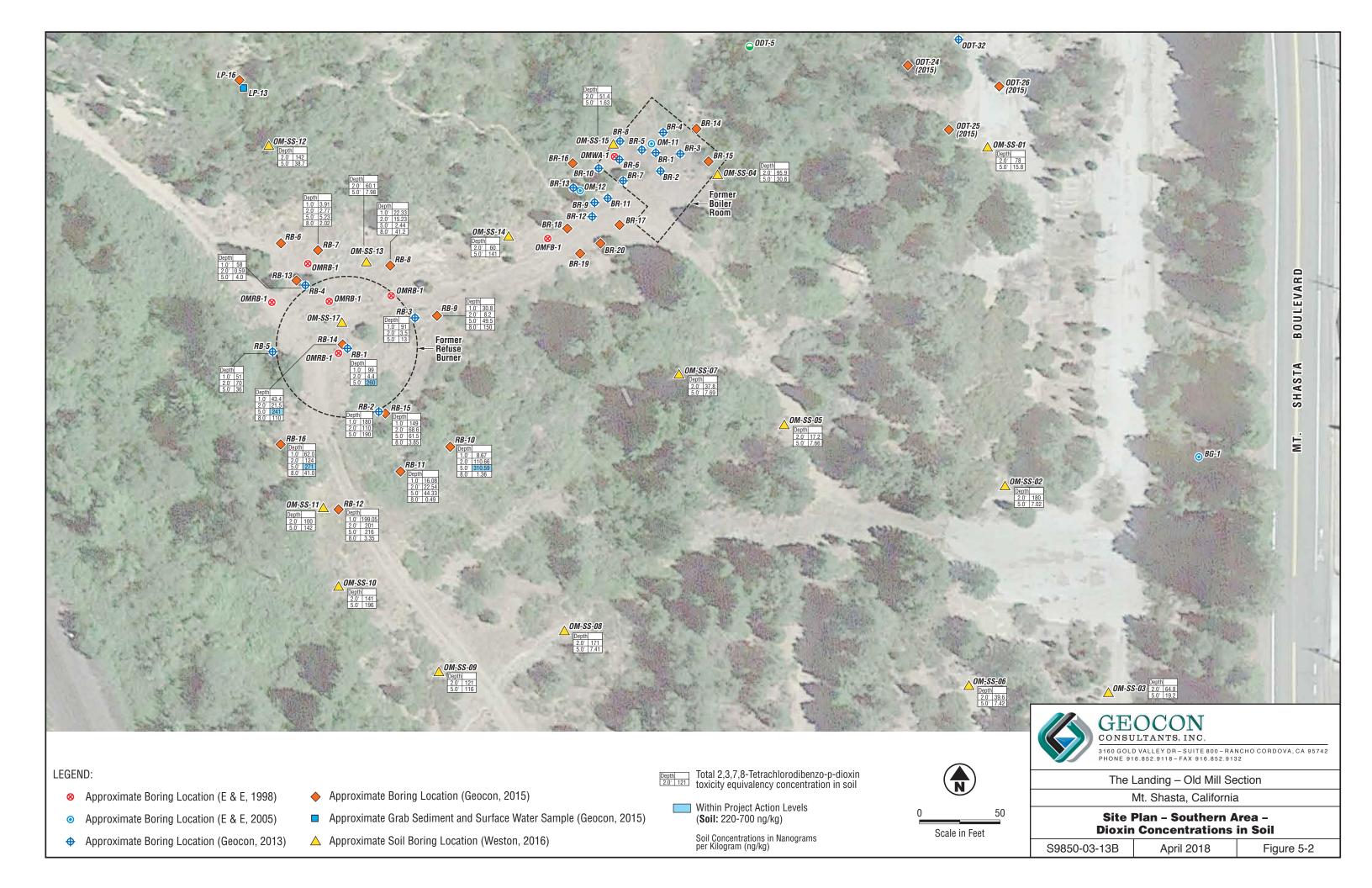

- *California Soils*, August 22, 2016, available online at https://www.dtsc.ca.gov/assessingrisk/humanrisk2.cfm.
- DTSC, Human Health Risk Assessment Note No. 2, Human and Ecological Risk Office, Soil Remedial Goals for Dioxins and Dioxin-like Compounds for Consideration at California Hazardous Waste Site,. April 2017, available online at http://www.dtsc.ca.gov/AssessingRisk/upload/HHRA-Note-2-dioxin-2017-04-06.pdf.
- DTSC, Human Health Risk Assessment Note No. 3, Human and Ecological Risk Office, DTSC-recommended Methodology for Use of U.S. EPA Regional Screening Levels (RSLs) in the Human Health Risk Assessment Process at Hazardous Waste Sites and Permitted Facilities, January 2018, available online at http://www.dtsc.ca.gov/AssessingRisk/upload/HHRA-Note-3-January-2018.pdf.
- Ecology and Environment, Draft Brownfields Targeted Site Assessment, City of Mt. Shasta, Roseburg Commerce Park, September 1998.
- Ecology and Environment, Targeted Brownfields Assessment, City of Mt. Shasta, Roseburg Commerce Park, May 2005.
- Geocon Consultants, Inc., Phase II Environmental Site Assessment, The Landing Mt. Shasta Business Park Assessment Project, Former Roseburg Lumber "Old Mill," Mt. Shasta, California, April 2014, Revised June 2014.
- Geocon Consultants, Inc., Analysis of Brownfields Cleanup Alternatives, The Landing Mt. Shasta Business Park, Former Roseburg Lumber "Old Mill," Mt. Shasta, California, December 1, 2016.
- Geocon Consultants, Inc., Final Targeted Site Investigation Report, The Landing Old Mill Section April 22, 2015.
- Geocon Consultants, Inc., Final Targeted Site Investigation Workplan, The Landing New Mill Section March 9, 2016.
- Geocon Consultants, Inc., Final Targeted Site Investigation, The Landing New Mill Section April 29, 2016.
- Hickman, I. C. (ed.), *The Jepson Manual: Higher Plants of California*, University of California Press, Berkeley, California, 1993.
- Holland, R.F, *Preliminary Descriptions of the Terrestrial Natural Communities of California*. Prepared for: California Department of Fish and Game, Sacramento, California, 1986.
- Iowa State University, Iowa Environmental Mesonet (data from City of Mt. Shasta). http://mesonet.agron.iastate.edu/sites/windrose.phtml?station=MHS&network=CA_A_SOS, March 2018.
- Kearney Foundation of Soil Science, Division of Agriculture and Natural Resources, University of California, *Background Concentrations of Trace and Major Elements in California Soils*, March 1996.
- Marconi, Ted, former City Manager, City of Mt. Shasta, personal communication with Geocon Consultants, Inc., May 2013.
- Mayer, K.E., and W.F. Laudenslayer, *A Guide to Wildlife Habitats in California*. California Department of Fish and Game, 1988.

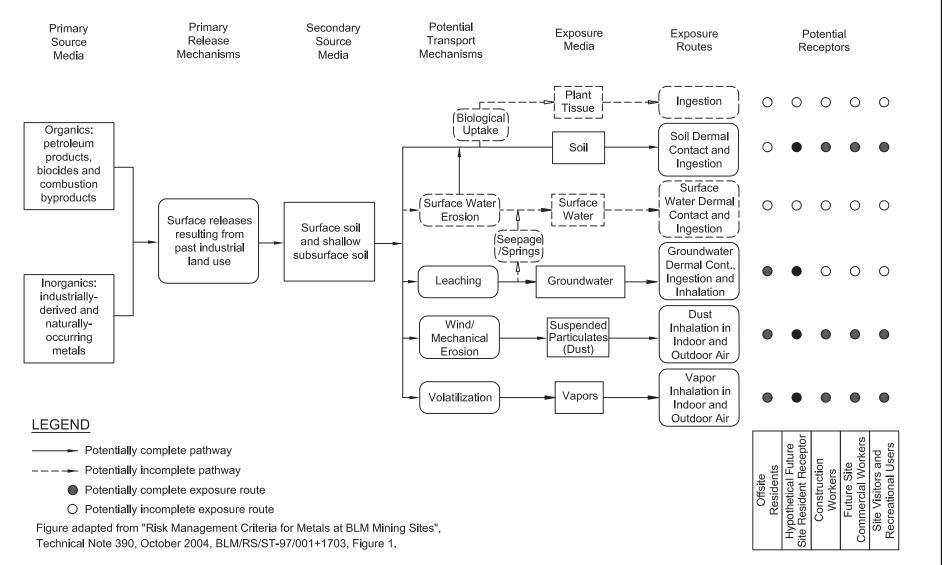

- National Institutes of Health (NIH), Health and Human Services. TOXNET (https://toxnet.nlm.nih.gov), January 2018.
- OEHHA, California Office of Environmental Health Hazard Assessment, *Cal/Ecotox Exposure Factors*, updated February 1999, http://www.oehha.ca .gov/cal_ecotox/species_reports.htm, accessed June 5, 2007.
- OEHHA, *Public Health Goals for Chemicals in Drinking Water*, *Arsenic*, Office of Environmental Health Hazard Assessment, 2004.
- OEHHA, Child-Specific Benchmark Change in Blood Lead Concentration for School Site Risk Assessment, April 2007, available online at http://oehha.ca.gov/public_info/public/kids/pdf/PbHGV041307.pdf.
- OEHHA, Revised California Human Health Screening Levels for Lead, California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, Integrated Risk Assessment Branch, September 2009.
- Pacific Municipal Consultants, Roseburg Commerce Park Draft Environmental Impact Report, May 1998.
- San Francisco Bay Regional Water Quality Control Board, Environmental Screening Levels, February 2016, Rev. 3.
- Sawyer and Keeler-Wolf, *Manual of California Vegetation*, California Native Plant Society, 1995, Available online at http://www.cnps.org/cnps/vegetation/manual.php.
- TRC, Removal Action Work Plan, The Landing Mt. Shasta Commerce Park, South Mt. Shasta Boulevard, Mt. Shasta, California, March 2016.
- USEPA, *Guidelines for Ecological Risk Assessment*, EPA/630/R-95/002F, Federal Register 63(93):26846-26924), April 1998, available online at https://www.epa.gov/risk/guidelines-ecological-risk-assessment.
- USEPA, Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, OSWER 9355.4-24, 2002.
- USEPA, *Role of Background in CERCLA Cleanup Program*, OSWER 0285.6-07P, 2002, available online at www.epa.gov/oswer/riskassessment/pdf /role.pdf.
- USEPA, Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (RAGS) Part E, Supplemental Guidance for Dermal Risk Assessment, OSWER 9285.7-02EP, 2004.
- USEPA, *Guidance for Developing Ecological Soil Screening Levels*, Office of Solid Waste and Emergency Response (OSWER) Directive 9285.7-55, February 2005.
- USEPA, Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs), Attachment 4-1, Wildlife Exposure Factors and Bioaccumulation Models, http://www.epa.gov/ecotox/ecossl/SOPs.htm, 2005.


- USEPA, *Ecological Soil Screening Levels* (*Eco-SSLs*), 2018, Interim documents for metals available online at http://www.epa.gov/ecotox/ecossl.
- USEPA, Exposure Factors Handbook, EPA/600/R-090/052F, September 2011.
- USEPA, ProUCL Version 5.1.002 User Guide, Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations, EPA/600/R-07/041, October 2015.
- USEPA, ProUCL Version 5.1.002 Technical Guide, Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations, EPA/600/R-07/041, October 2015.
- USEPA, Regional Screening Levels, January 2018, Accessed at: www.epa.gov/region9/superfund/prg/.
- United States Geological Survey, 7.5-minute Quadrangle Topographic Map, City of Mt. Shasta, California, 2012.
- URS. Additional Targeted Site Investigation Report Roseburg Lumber Mill, June 25, 2007.
- Weston Solutions, Inc. Draft Phase I/II Investigation Targeted Brownfields Assessment Report, October 2016.
- Weston Solutions, Inc. Final Analysis of Brownfields Cleanup Alternatives, December 2016.

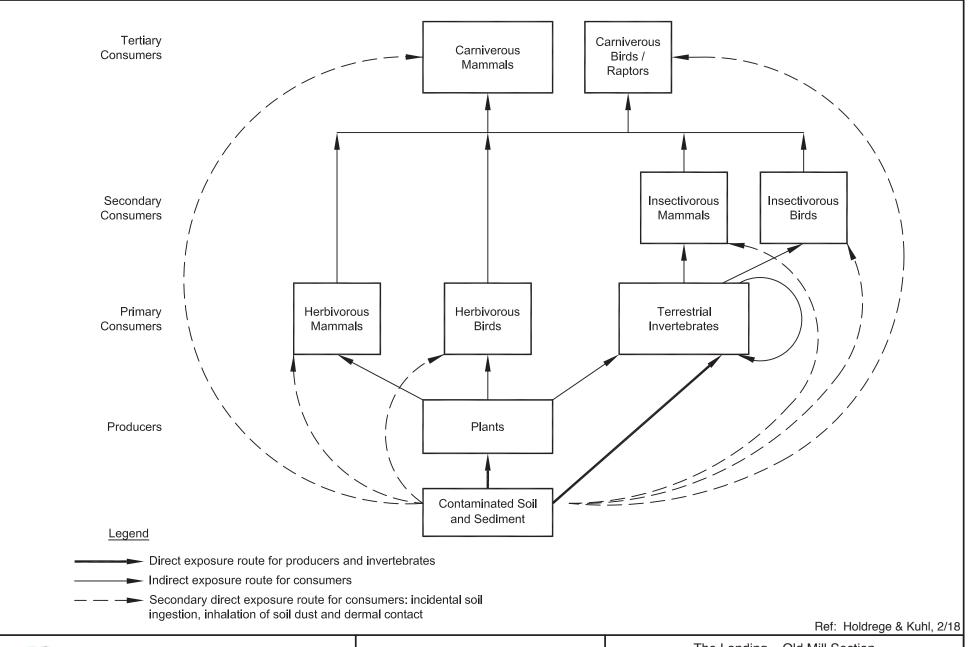

- 72-







TRANSPORT MECHANISMS AND EXPOSURE MEDIA FOR HUMAN RECEPTORS



Ref: Holdrege & Kuhl, 2/18

SITE CONCEPTUAL MODEL

The Landing – Old Mill Section					
Mt. Shasta, California					
S9850-03-13B	April 2018	Figure 6			

ECOLOGICAL SITE CONCEPTUAL MODEL

The Landing – Old Mill Section					
S9850-03-13B	April 2018	Figure 7			

SUMMARY OF LABORATORY ANALYSIS RESULTS - SOIL

PETROLEUM HYDROCARBONS AND PENTACHLOROPHENOL

THE LANDING - OLD MILL SECTION MT. SHASTA, CALIFORNIA

SAMPLE I.D.	SAMPLE DATE	SAMPLE DEPTH	DRO	ORO	GRO	PENTACHLOROPHENOL		
			(mg/kg)					
WESTON 2016 PHASE II								
OM-SS-01-2	6/16/2016	2	100	570				
OM-SS-01-5	6/16/2016	5						
OM-SS-02-2	6/16/2016	2	56 J	720 J				
OM-SS-02-5	6/16/2016	5						
OM-SS-03-2	6/16/2016	2	130	4,100				
OM-SS-03-5	6/16/2016	5						
OM-SS-04-2	6/16/2016	2	160	730				
OM-SS-04-5	6/16/2016	5						
OM-SS-05-2	6/16/2016	2	9.7	65				
OM-SS-05-5	6/16/2016	5						
OM-SS-06-2	6/16/2016	2	22	120				
OM-SS-06-5	6/16/2016	5						
OM-SS-07-2	6/16/2016	2	54	130				
OM-SS-07-5	6/16/2016	5						
OM-SS-08-2	6/16/2016	2	130	460				
OM-SS-08-5	6/16/2016	5						
OM-SS-09-2	6/16/2016	2	74	520				
OM-SS-16	6/16/2016	2	490	1,500				
OM-SS-17	6/16/2016	2	270	1,200				
OM-SS-18 (dup OM-SS-02-2)	6/16/2016	2	100 J	1,300 J				
OM-SS-19 (dup OM-SS-16)	6/16/2016	2	450	1,600				
		<u> </u>		<u> </u>				
GEOCON 2015 TSI								
Former Boiler Room	T	1						
BR-14-0.5-1.0	3/3/2015	1	130	540				
BR-24-0.5-1.0 (dup of BR-14)	3/3/2015	1	160	550				
BR-15-0.5-1.0	3/3/2015	2	93	320				
BR-15-1.5-2.0	3/3/2015	2	410	1,100				
BR-25-1.5-2.0 (dup of BR-15)	3/3/2015	5	310	520				
BR-15-4.5-5.0	3/3/2015	1	1.4	2.7				
BR-16-0.5-1.0	3/3/2015	2	36	160				
BR-16-1.5-2.0	3/3/2015	5	26	89				
BR-16-4.5-5.0	3/3/2015	1	15	41				
BR-17-0.5-1.0	3/3/2015	2	840	3,200				
BR-17-1.5-2.0	3/3/2015		330	1,100				
BR-17-4.5-5.0	3/3/2015	5	71	350				
BR-18-0.5-1.0	3/3/2015	1	430	1,800				
BR-18-1.5-2.0	3/3/2015	2	490	1,700				
BR-18-4.5-5.0	3/3/2015	5	330	1,200				
BR-19-0.5-1.0	3/3/2015	1	240	1,100				
BR-19-1.5-2.0	3/3/2015	2	5,000	14,000				
BR-19-4.5-5.0	3/3/2015	5	730	2,100				
BR-20-0.5-1.0	3/3/2015	1	1,200	4,000				
BR-20-1.5-2.0	3/3/2015	2	640	2,400				
BR-20-4.550	3/3/2015	5	900	3,000				
Former Refuse Burner	T	1 1						
RB-6-0.5-1.0	3/4/2015	1	340	1,300				
RB-6-1.5-2.0	3/4/2015	2	24	79				
RB-6-4.5-5.0	3/4/2015	5	12	36				

SUMMARY OF LABORATORY ANALYSIS RESULTS - SOIL

PETROLEUM HYDROCARBONS AND PENTACHLOROPHENOL

THE LANDING - OLD MILL SECTION MT. SHASTA, CALIFORNIA

		CONTRACT NO.	17-T4360 AND WORK O	RDER NO. 1-360-1.0-10224	5	
SAMPLE I.D.	SAMPLE DATE	SAMPLE DEPTH	DRO	ORO	GRO	PENTACHLOROPHENOI
RB-6-7.5-8.0	3/4/2015	8	11	33		
RB-7-0.5-1.0	3/4/2015	1	720	2,300		
RB-7-1.5-2.0	3/4/2015	2	670	2,200		
RB-7-4.5-5.0	3/4/2015	5	960	3,100		
RB-17-4.5-5.0 (dup of RB-7)	3/4/2015	5	1,300	4,500		
RB-7-7.5-8.0	3/4/2015	8	1,900	5,900		
RB-9-0.5-1.0	3/3/2015	1	810	3,500		
RB-19-0.5-1.0 (dup of RB-9)	3/3/2015	1	640	2,600		
RB-9-1.5-2.0	3/3/2015	2	59	180		
RB-9-4.5-5.0	3/3/2015	5	240	860		
RB-9-7.5-8.0	3/3/2015	8	210	630		
RB-13-0.5-1.0	3/4/2015	1	570	2,400		
RB-13-1.5-2.0	3/4/2015	2	1,300	4,600		
RB-13-4.5-5.0	3/4/2015	5	770	2,700		
RB-13-7.5-8.0	3/4/2015	8	630	2,000		
Former Dip Tank and Transfer Pit				·		
ODT-25-0.5-1.0	3/3/2015	1				< 0.067
ODT-25-1.5-2.0	3/3/2015	2				< 0.067
ODT-25-4.5-5.0	3/3/2015	5				< 0.067
ODT-25-7.5-8.0	3/3/2015	8				< 0.067
ODT-26-0.5-1.0	3/3/2015	1				< 0.067
ODT-26-1.5-2.0	3/3/2015	2				< 0.067
ODT-26-4.5-5.0	3/3/2015	5				< 0.067
ODT-26-7.5-8.0	3/3/2015	8				< 0.067
GEOCON 2014 PHASE II ESA						
Former Dip Tank and Transfer Pit ODT-6-1	12/3/2013	1	7.9	16		<1.6
ODT-6-2	12/3/2013	2	5.5	6.7		<1.6
ODT-6-5	12/3/2013	5	3.4	2.5		<1.6
ODT-31-5 (dup ODT-6-5)	12/3/2013	5	3.2	2.2		<1.6
ODT-6-8	12/3/2013	8	6.9	4.0		<1.6
ODT-7-1	12/3/2013	1	58	150		<1.6
ODT-7-2	12/3/2013	2	3.5	4.3		<1.6
ODT-7-5	12/3/2013	5	2.9	2.4		<1.6
ODT-7-8	12/3/2013	8	2.1	1.3		<1.6
ODT-8-1	12/3/2013	1	2.7	2.6		2.5
ODT-8-2		2				5.4
ODT-8-5	12/3/2013 12/3/2013	5	6.0 3.8	6.5 4.0		<1.6
ODT-8-8		8				
ODT-9-1	12/3/2013 12/3/2013	1	2.6 2.3	1.9 3.1		<1.6 <1.6
ODT-9-2	12/3/2013	2	1.6	1.6		<1.6
ODT-9-5	12/3/2013	5	2.4	1.8		<1.6
ODT-10-1	12/3/2013	1	2.4	1.6		<1.6
ODT-10-2	12/3/2013	5				<1.6
ODT-10-5	12/3/2013					<1.6
ODT-11-1	12/3/2013	1				<1.6
ODT-11-2	12/3/2013	2				<1.6
	10/0/0010	~				<1.6
ODT-11-5	12/3/2013	5				<1.6
ODT-11-5 ODT-12-1	12/2/2013	1				<1.6
ODT-11-5			 			

SUMMARY OF LABORATORY ANALYSIS RESULTS - SOIL

PETROLEUM HYDROCARBONS AND PENTACHLOROPHENOL

THE LANDING - OLD MILL SECTION MT. SHASTA, CALIFORNIA

SAMPLE I.D.	SAMPLE DATE	SAMPLE DEPTH	DRO	ORO	GRO	PENTACHLOROPHENOL
ODT-13-1	12/2/2013	1				<1.6
ODT-13-2	12/2/2013	2				<1.6
ODT-13-5	12/2/2013	5				<1.6
ODT-14-1	12/2/2013	1				<1.6
ODT-14-2	12/2/2013	2				<1.6
ODT-14-5	12/2/2013	5				<1.6
ODT-15-1	12/3/2013	1	41	86		<1.6
ODT-15-2	12/3/2013	2	19	31		<1.6
ODT-15-5	12/3/2013	5	10	13		<1.6
ODT-16-1	12/3/2013	1				<1.6
ODT-29-1 (dup ODT-16-1)	12/3/2013	1				<1.6
ODT-16-2	12/3/2013	2				<1.6
	12/3/2013	2 2				<1.6
ODT-29-2 (dup ODT-16-2)		5				
ODT-16-5	12/3/2013					<1.6
ODT-17-1	12/3/2013	1				<1.6
ODT-17-2	12/3/2013	2				<1.6
ODT-17-5	12/3/2013	5	11/4.2 (1)	8.7/3.7 ⁽¹⁾		<1.6
ODT-18-1	12/3/2013	1	11/4.3 (1)		<1.0	7.3
ODT-30-1 (dup ODT-18-1)	12/3/2013	1	790/62 (1)	730/44 (1)		7.5
ODT-18-2	12/3/2013	2	5.8	4.5	<1.0	2.4
ODT-18-5	12/3/2013	5	4.2	3.2	<1.0	<1.6
ODT-30-5 (dup ODT-18-5)	12/3/2013	5	3.1	2.4		<1.6
ODT-19-1	12/3/2013	1				<1.6
ODT-19-2	12/3/2013	2				<1.6
ODT-19-5	12/3/2013	5				<1.6
ODT-20-1	12/3/2013	1				<1.6
ODT-20-2	12/3/2013	2				<1.6
ODT-20-5	12/3/2013	5				<1.6
ODT-21-1	12/3/2013	1				9.0
ODT-21-2	12/3/2013	2				<1.6
ODT-21-5	12/3/2013	5				<1.6
ODT-22-1	12/3/2013	1				5.6
ODT-22-2	12/3/2013	2				8.0
ODT-22-5	12/3/2013	5				<1.6
ODT-23-1	12/3/2013	1	4.0	3.9		
ODT-23-2	12/3/2013	2	3.1	2.2		
ODT-23-5	12/3/2013	5	4.0	2.6		
ODT-24-1	12/3/2013	1	4.9	7.8		
ODT-24-2	12/3/2013	2	3.2	2.3		
ODT-24-5	12/3/2013	5	2.8	1.9		
ODT-25-1	12/3/2013	1	4.3	4.6		
ODT-25-2	12/3/2013	2	3.7	3.7		
ODT-25-5	12/3/2013	5	3.6	2.8		
ODT-26-1	12/3/2013	1	4.7	4.2		
ODT-26-2	12/3/2013	2	3.1	2.2		
ODT-26-5	12/3/2013	5	3.1	2.3		
ODT-27-1	12/2/2013	1	33	83		
ODT-27-1	12/2/2013	2	54	130		
ODT-27-5	12/2/2013	5	15	23		
ODT-28-1	12/2/2013	1	4.9	6.4		
ODT-28-2	12/2/2013	2	9.8	17		
ODT-28-5	12/2/2013	5	3.0	2.6		

SUMMARY OF LABORATORY ANALYSIS RESULTS - SOIL

PETROLEUM HYDROCARBONS AND PENTACHLOROPHENOL

THE LANDING - OLD MILL SECTION MT. SHASTA, CALIFORNIA

SAMPLE I.D.	SAMPLE DATE	SAMPLE DEPTH	DRO	ORO	GRO	PENTACHLOROPHENOL
Former Boiler Room	SAMI LE DATE					
BR-1-1	12/2/2013	1	130	270		
BR-1-2	12/2/2013	2	6.8	10		
BR-1-5	12/2/2013	5	1.7	1.1		
BR-2-1	12/2/2013	1	72	120		
BR-2-2	12/2/2013	2	56	91		
BR-2-5	12/2/2013	5	2.4	3.0		
BR-3-1	12/2/2013	1	55	110		
BR-3-2	12/2/2013	2	310	920		
BR-3-5	12/2/2013	5	2.0	1.7		
BR-4-1	12/2/2013	1	73	98		
BR-4-2	12/2/2013	2	9.6	54		
BR-4-5	12/2/2013	5	31	85		
BR-5-1	12/2/2013	1	120	240		
BR-5-2	12/2/2013	2	3.8	3.1		
		5	3.1	3.7		
BR-5-5 BR-6-1	12/2/2013					
	12/2/2013	1	140	350		
BR-6-2	12/2/2013	2	7.2	14		
BR-6-5	12/2/2013	5	2.1	1.6		
BR-7-1	12/2/2013	1	130	280		
BR-7-2	12/2/2013	2	78	120		
BR-7-5	12/2/2013	5	71	160		
BR-8-1	12/2/2013	1	120	320		
BR-8-2	12/2/2013	2	68	120		
BR-8-5	12/2/2013	5	55	140		
BR-9-1	12/2/2013	1	650	1,400		
BR-9-2	12/2/2013	2	17	39		
BR-9-5	12/2/2013	5	5.8	5.5		
BR-10-1	12/2/2013	1	320	1,000		
BR-14-1 (dup BR-10-1)	12/2/2013	1	260	420		
BR-10-2	12/2/2013	2	10	18		
BR-14-2 (dup BR-10-2)	12/2/2013	2	12	28		
BR-10-5	12/2/2013	5	10	17		
BR-11-1	12/2/2013	1	310	830		
BR-11-2	12/2/2013	2	520	1,000		
BR-11-5	12/2/2013	5	5.6	7.5		
BR-12-1	12/2/2013	1	590	1,500		
BR-12-2	12/2/2013	2	1,600	3,500		
BR-12-5	12/2/2013	5	6.3	9.1		
BR-13-1	12/2/2013	1	34	78		
BR-15-1 (dup BR-13-1)	12/2/2013	1	33	89		
BR-13-2	12/2/2013	2	130	310		
BR-13-5	12/2/2013	5	52	100		
BR-15-5 (dup BR-13-5)	12/2/2013	5	7.3	10		
Former Log Pond	.	1				
LP-1-0.5	12/4/2013	0.5	72	89		
LP-2-0.5	12/4/2013	0.5	29	46		
LP-3-0.5	12/4/2013	0.5	38	66		
LP-4-0.5	12/4/2013	0.5	80	120		
LP-5-0.5	12/4/2013	0.5	57	95		
LP-6-0.5	12/4/2013	0.5	69	130		

SUMMARY OF LABORATORY ANALYSIS RESULTS - SOIL

PETROLEUM HYDROCARBONS AND PENTACHLOROPHENOL

THE LANDING - OLD MILL SECTION MT. SHASTA, CALIFORNIA

SAMPLE I.D.	SAMPLE DATE	SAMPLE DEPTH	DRO	ORO	GRO	PENTACHLOROPHENOL
LP-11-0.5 (dup LP-6-0.5)	12/4/2013	0.5	54	100		
LP-7-0.5	12/4/2013	0.5	67	140		
LP-8-0.5	12/4/2013	0.5	83	160		
LP-9-0.5	12/4/2013	0.5	23	82		
LP-10-0.5	12/4/2013	0.5	18	35		
Former Refuse Burner	·					
RB-1-1	12/3/2013	1	190	400		
RB-1-2	12/3/2013	2	150	300		
RB-1-5	12/3/2013	5	39	95		
RB-2-1	12/3/2013	1	8.3	21		
RB-2-2	12/3/2013	2	14	21		
RB-2-5	12/3/2013	5	1.7	1.3		
RB-3-1	12/3/2013	1	300	420		
RB-3-2	12/3/2013	2	170	280		
RB-3-5	12/3/2013	5	170	270		
RB-4-1	12/3/2013	1	410	780		
RB-4-2	12/3/2013	2	580	720		
RB-4-5	12/3/2013	5	860	1,200		
RB-5-1	12/3/2013	1	8.1	13		
RB-5-2	12/3/2013	2	8.9	16		
RB-5-5	12/3/2013	5	5.4	10		
LIDG AGOS DOL						
URS 2007 TSI						
Former Dip Tank and Transfer P	it	1				
ODT-1-2	5/31/2007	2				< 0.020
ODT-1-5	5/31/2007	5				< 0.020
ODT-2-2	5/31/2007	2	<1.0	< 50		1.1
ODT-2-8	5/31/2007	8	< 0.99	<50		0.027
ODT-3-2	5/31/2007	2	44	<50		130
ODT-3-8	5/31/2007	8	<0.99	<50		0.27
E&E 2005 TSA						
Background						
BG-1-0.5	3/1/2005	0.5	<8.6	82		
BG-2-0.5	3/1/2005	0.5	<5.9	38		
BG-2-2	3/1/2005	2	<3.5	<14	<3.9	
BG-2-7.5	3/1/2005	7.5	<3.4	<14		
BG-3-0.5	3/1/2005	0.5	<3.2	<13		
Former Dip Tank and Transfer P	it	117		· · · · · · · · · · · · · · · · · · ·		
OM-1-0.5	3/2/2005	0.5				0.14 J
OM-1-2	3/2/2005	2			<3.8	0.25 J
OM-1-7.5	3/2/2005	7.5				<1.1
OM-2-0.5	3/2/2005	0.5				0.068 J
OM-2-2	3/2/2005	2				<1.2
OM-2-7.5	3/2/2005	7.5				<1.1
OM-3-0.5	3/2/2005	0.5				<4.7
OM-3-2		2				<1.2
	3/2/2005				<3.7	
OM-3-7.5	3/2/2005	7.5				<1.2
OM-4-0.5	3/2/2005	0.5				11
OM-4-2	3/2/2005	2				12
						0.095 J
OM-4-7.5 OM-5-0.5	3/2/2005 3/2/2005	7.5 0.5				0.75 J

SUMMARY OF LABORATORY ANALYSIS RESULTS - SOIL

PETROLEUM HYDROCARBONS AND PENTACHLOROPHENOL

THE LANDING - OLD MILL SECTION MT. SHASTA, CALIFORNIA

CONTRACT NO. 17-T4360 AND WORK ORDER NO. 1-360-1.0-102246

	1	CONTRACT NO. 1	7-14300 AND WORK O	RDER NO. 1-360-1.0-102246)	
SAMPLE I.D.	SAMPLE DATE	SAMPLE DEPTH	DRO	ORO	GRO	PENTACHLOROPHENOL
OM-5-7.5	3/2/2005	7.5				<1.3
OM-6-0.5	3/2/2005	0.5				<1.3
OM-6-4	3/2/2005	4				<1.3
OM-6-7.5	3/2/2005	7.5				<1.1
OM-7-0.5	3/2/2005	0.5				0.49 J
OM-7-2	3/2/2005	2	<3.5	<14	<6.1	0.18 J
OM-7-7.5	3/2/2005	7.5	<3.8	<15		<1.4
OM-8-0.5	3/2/2005	0.5				7.5
OM-8-2	3/2/2005	2	<3.3	<13		5.6
OM-8-7.5	3/2/2005	7.5				0.2 J
OM-9-0.5	3/2/2005	0.5	<35	520		<1.2
OM-9-2	3/2/2005	2	<8.9	170	<3.9	<1.2
OM-9-7.5	3/2/2005	7.5	<3.3	<13		<1.0
OM-10-0.5	3/2/2005	0.5				150
OM-10-2	3/2/2005	2				150
OM-10-7.5	3/2/2005	7.5				15
Former Boiler Room						
OM-11-2	3/2/2005	2			<7.0	
OM-12-2	3/2/2005	2			<11	
OM-16-4 (dup)	3/2/2005	4				0.075 J
E&E 1998 TSA						
Former Boiler Room						
OMWA-1-1	May-98	1	784		<1.52	<1.3
OMFB-1-15	May-98	15	<14		<1.4	
Former Dip Tank and Transfer P	it	•				
OMTP-1-2	May-98	2				< 0.95
OMTP-2-1	May-98	1	47,000		<1.13	
OMDT-1-1	May-98	1				< 0.4
OMDT-2-2	May-98	2				32
OMDT-2-5	May-98	5				<1.2
OMDT-10-1	May-98	1				2.5
Former Log Pond						
OMLP-1-1	May-98	2				<1.6
OMLP-1-2	May-98	2	594		<1.39	
PALs ²			570	5,100	770	4.0

Notes:

mg/kg = milligrams per kilogram

< = Less than laboratory reporting limits

 $PAL = Project\ Action\ Level;\ PALs\ for\ TPH = ESL\ for\ direct-exposure/leaching\ to\ groundwater;\ PAL\ for\ \ PCP = Ind.\ RSL$

Bold = concentration > PALs

--- = not analyzed

 $^{^{1}=\}textbf{Sample reanalyzed for DRO and ORO due to elevated concentrations when compared with duplicate and remaining samples}$

 $^{^2\,\}mathrm{PALs}$ were determined based on project specific goals

SUMMARY OF LABORATORY ANALYSIS RESULTS - GROUNDWATER AND SURFACE WATER PETROLEUM HYDROCARBONS AND PENTACHLOROPHENOL

THE LANDING - OLD MILL SECTION MT. SHASTA, CALIFORNIA

		DRO	ORO	GRO	PCP
SAMPLE I.D.	SAMPLE DATE	DKO	(μg/l)	GKO	rcr
LD MILL GROUNDWATER	MONITORING WELLS	S	(μg/1)		
	1/18/2018	<50	<50		
OM-1	3/17/2016	70	80		<0.1
0141 1	3/12/2015	<50	<50		<1.0
	1/18/2018	<50 <50	<50		
OM-2	3/17/2016				
O1v1-2	3/12/2015	<50	<50		<0.1
	1/18/2018	<50	<50		<1.0
OM-3	3/17/2016	<50	<50		
OWI-3	3/12/2015	90	100		<0.1
		160	150		<1.0
OM-3A (duplicate)	3/17/2016	90	100		<0.1
	3/12/2015	150	150		<1.0
OM-4	1/18/2018	70	80		
OM-4	3/17/2016	<50	<50		<0.1
	3/12/2015 1/18/2018	<50	<50		<1.0
014.5		<50	<50		
OM-5	3/17/2016	170	170		<0.1
	3/12/2015	<50	<50		<1.0
× 0 0 0 0 1 mg					
GEOCON TSI 2015					
ODT-23-GW	3/3/2015	<60	<60		<1.0
ODT-24-GW	3/3/2015	150	220		7.7
ODT-34-GW (dup ODT-24)	3/3/2015	110	170		7.9
ODT-25-GW	3/3/2015				<1.0
ODT-26-GW	3/3/2015				<1.0
BR-18-GW	3/3/2015	650	920		
BR-19-GW	3/3/2015	670	670		
BR-20-GW	3/3/2015	1,100	1,900		
LP-14-GW	3/5/2015	3	6		
LP-15-GW	3/5/2015	<60	80		
LP-16-GW	3/5/2015	360	610		
RB-13-GW	3/5/2015	2,800	2,200		
LP-11-SW*	3/5/2015	< 50	< 50		
LP-12-SW*	3/5/2015	< 50	< 50		
LP-22-SW* (dup of LP-12)	3/5/2015	< 50	<50		
	3/5/2015	<50	<50		

SUMMARY OF LABORATORY ANALYSIS RESULTS - GROUNDWATER AND SURFACE WATER PETROLEUM HYDROCARBONS AND PENTACHLOROPHENOL

THE LANDING - OLD MILL SECTION

MT. SHASTA, CALIFORNIA

SAMPLE I.D.	SAMPLE DATE	DRO	ORO	GRO	PCP
SAMFLE I.D.	SAMPLE DATE				
EOCON 2014 PHASE II ESA					
ormer Dip Tank and Transfer Pit					
ODT-6	12/3/2013	100	<50		<1.0
ODT-7	12/3/2013	70	60		1.8
ODT-9	12/3/2013	70	<60		<1.0
ODT-10	12/3/2013				<1.1
ODT-11	12/3/2013				<1.1
ODT-12	12/2/2013				<1.1
ODT-15	12/3/2013	70	50		<1.0
ODT-17	12/3/2013				<1.0
ODT-18	12/3/2013	70	< 50	< 50	2.5
ODT-30 (dup ODT-18)	12/3/2013	70	<50		15
ODT-19	12/3/2013				<1.0
ODT-20	12/3/2013				<1.0
ODT-23	12/3/2013	60	<50		
ODT-24	12/3/2013	80	<60		
ODT-32	12/3/2013	70	<50		11
ormer Boiler Room					
BR-1	12/2/2013	80	<50		
BR-6	12/2/2013	60	< 50		
BR-9	12/2/2013	260	300		
ormer Log Pond	•				
LP-1	12/4/2013	610	1,100		
LP-6	12/4/2013	200	260		
LP-11 (dup LP-6)	12/4/2013	110	110		
RS 2007 TSI					
ODT-1-8	5/31/2007				<1.0
ODT-2-10	5/31/2007	<50	< 500		<1.0
ODT-3-10	5/31/2007	93	< 500		4.5
ODT-4-15	5/31/2007	< 50	< 500		<1.0
ODT-5-15	5/31/2007	< 50	< 500		<1.0

SUMMARY OF LABORATORY ANALYSIS RESULTS - GROUNDWATER AND SURFACE WATER

PETROLEUM HYDROCARBONS AND PENTACHLOROPHENOL

THE LANDING - OLD MILL SECTION MT. SHASTA, CALIFORNIA

CONTRACT NO. 17-T4360 AND WORK ORDER NO. 1-360-1.0-102246

SAMPLE I.D.	SAMPLE DATE	DRO	ORO	GRO	PCP
SAMPLE I.D.	SAMPLE DATE		$(\mu g/l)$		
E&E 2005 TSA					
OM-9W	3/2/2005	<120	910 J	<25	< 5.0
OM-10W	3/2/2005	340 J	< 500	<25	110
OM-110W (dup OM-10W)	3/2/2005	210 J	< 500	<25	110
MW1-GW	May-98			<100	
E&E 1998 TSA					
MW2-GW	May-98	<1000		<100	
MW3-GW	May-98	<1000		<100	
MW4-GW (dup MW2)	May-98	<1000		<100	
OMDT-1-GW	May-98	<1000		734	
OMDT-5-GW	May-98	<1000		<100	
OMDT-10-GW	May-98	<100		<100	
PALs ¹	•	150	5,000	220	1.0

Notes:

DRO = diesel-range organics

ORO = oil-range organics

GRO = gasoline-range organics

PCP = pentachlorophenol

 $\mu g/l = micrograms \ per \ liter$

< = less than laboratory reporting limits

Bold = concentrations > PALs

J = reported concentration is estimated

--- = not analyzed

* Surface Water

 $^{^1}$ PALs = Project Action Levels - California Maximum Contaminant Levels for drinking water

SUMMARY OF LABORATORY ANALYSIS RESULTS - SOIL

DIOXIN

THE LANDING $\,$ - OLD MILL SECTION MT. SHASTA, CALIFORNIA

							TRACT N	O. 17-T436	50 AND W	VORK OR	DER NO.	1-360-1.0-	102246							
SAMPLE ID	SAMPLE DEPTH	3,7,8-TCDD	,2,3,7,8-PeCDD	,2,3,4,7,8-HxCI	,2,3,6,7,8-HxCI	,2,3,7,8,9-HxCI	,2,3,4,6,7,8-HpC	осрр	2,3,7,8-TCDF	,2,3,7,8-PeCDF	,3,4,7,8-PeCDF	,2,3,4,7,8-HxCI	,2,3,6,7,8-HxCI	,3,4,6,7,8-HxCI	,2,3,7,8,9-HxCI	,2,3,4,6,7,8-HpC	,2,3,4,7,8,9-HpC	OCDF		
		2,3	1,2	1,2	1,2	1,2	1,2	00	2,3	1,2	2,3	1,2	1,2	2,3	1,2	1,2	1,2	ŏ	2,3,7,8-TC	DD TEQ ¹
											(ng/kg	g)								
TYPECTON AND	- Pa																			
WESTON 2016 OM-SS-01-2	Phase II																			
OM-SS-01-2	5																		78	
OM-SS-02-2	2																		15.8	
OM-SS-02-2 OM-SS-02-5	5																		180	
OM-SS-02-3 OM-SS-03-2	2																		7.02	J
OM-SS-03-2 OM-SS-03-5	5																		64.8	
OM-SS-03-3	2																		19.2	
OM-SS-04-2 OM-SS-04-5	5																		95.9	
OM-SS-04-3	2																		30.8	
																			17.2	
OM-SS-05-5	5																		7.66	J
OM-SS-06-2	2																		39.6	
OM-SS-06-5	5																		7.42	J
OM-SS-07-2	2																		37.8	
OM-SS-07-5	5																		7.69	J
OM-SS-08-2	2																		171	
OM-SS-08-5	5																		7.41	J
OM-SS-09-2	2																		121	
OM-SS-09-5	5																		116	
OM-SS-10-2	2																		141	
OM-SS-10-5	5																		196	
OM-SS-11-2	2																		100	
OM-SS-11-5	5																		142	
OM-SS-12-2	2																		142	
OM-SS-12-5	5																		38.7	J
OM-SS-13-2	2																		60.1	
OM-SS-13-5	5																		7.98	J
OM-SS-14-2	2																		60	
OM-SS-14-5	5																		144	
OM-SS-15-2	2																		51.4	
OM-SS-15-5	5																		1.63	J
OM-SS-20 (dup	5																		1.05	
OM-SS-10-5)																			450	
OM-SS-21 (OM- SS-12-2)	2																		41.1	
55-12-2)																				
GEOCON 2015	TSI																			
RB-7-0.5-1.0	1	< 0.497	0.617 I	0.947 J	6.26	2.44 J	95	1,030	< 0.497	0.249 J	0.246 J	1.07 J	1.17 J	1.61 J	0.200 J	56.1	1.18 J	37	3.91	
RB-7-1.5-2.0	2	<0.493	0.510 J		4.6	1.93 J	66	659	<0.493	0.168 J	0.132 J	0.738 J	<2.47	1.02 J	<2.47	44.3	<2.47	27	2.77	
RB-7-4.5-5.0	5	<0.495	0.694 J	1.44 J	8.07	3.26	120	1,160	0.151 J	0.264 J	0.132 J 0.387 J	1.46 J	1.57 J	2.33 J	0.266 J	97.5	1.63 J	55	5.23	
17-4.5-5.0 (dup of R	5	< 0.493	<2.47	0.799 J	4.86	2.11 J	86	871	0.131 J	<2.47	0.233 J	0.984 J	1.08 J	1.62 J	<2.47	65.9	1.31 J	41	3.04	
RB-7-7.5-8.0	8	<0.494	0.368 J	0.799 J 0.606 J	2.41 J	1.28 J	53	549	<0.493	<2.46	0.233 J	0.724 J	<2.46	0.990 J	<2.46	25	<2.46	24	2.02	
RB-8-0.5-1.0	1	0.348 J	2.33	3.57	31.1	6.58	321	2,281	28.2	2.59	3.12 J	9.82	8.9	12.9	5.28	400	5.70	178	22.33	
18-0.5-1.0 (dup of R	1	0.44 J	3.71	3.92	40.5	8.00	430	2,722	29.7	2.75	2.76 J	12.0	10.5	15.2	7.52	466	7.40	187	27.71	
RB-8-1.5-2.0	2	0.17	1.60	2.62	19.1	4.95	250	1,986	13.5	1.26 J	1.00	6.27 J	6.97	8.81	2.8 J	344	4.62	147	15.23	
RB-8-4.5-5.0	5	0.139	0.501 J	0.449 J	2.145 J	0.549 J	32.9	268	2.26 J	0.309	0.479	0.826	0.981	1.16	0.833	30.5 J	0.953 J	17.9	2.44	
RB-8-7.5-8.0	8	8.47	22.0	9.29	32.5	22.4	354	1,133	1.14	0.236	0.226	0.544	0.329	0.475	0.637	4.54	0.306	4.64 J	41.2	
RB-9-0.5-1.0	1	0.562	3.48	6.09	47.5	15.2	689	6,810	0.340 J	1.41 J	1.75 J	9.04	8.6	12.5	1.64 J	695	9.39	361	30.8	
19-0.5-1.0 (dup of R	1	< 0.499	5.38	11.3	77.9	25.5	1,140	10,600	0.438 J	2.06 J	2.69	12.7	11.8	18.6	1.97 J	1130	14.4	631	48.5	
RB-9-1.5-2.0	2	< 0.499	1.16 J	1.83 J	11.9	4.45	177	1,410	< 0.499	<2.49	0.619 J	2.72	3.06	4.15	0.451 J	175	2.53	88	8.2	
RB-9-4.5-5.0	5	1.27	6.00	9.72	79.7	25.2	1,080	9,870	0.829	2.25 J	1.9 J	13.2	12.3	19.9	2.33 J	1120	13.5	645	49.5	
RB-9-7.5-8.0	8	8.17	36.5	22.1	345	150	2,030	12,400	0.914	2.93	3.45	19.3	22.3	35.1	2.6	2000	24.5	1,170	150	
RB-10-0.5-1.0	1	0.724 J	2.04	0.657 J	27.9	7.86	85.7	308.72	3.01 J	0.325	1.56 J	0.634	0.665	0.922	0.737	22.3 J	0.669	13.20	8.67	
RB-10-1.5-2.0	2	0.902	5.82	496	454	22.0	258	120	6.31	1.29	6.51 J	1.63	0.887	0.835	2.27	95.0	1.88	87.80	110.66	
RB-10-4.5-5.0	5	2.9 J	26.5	54.9	369	140	8,710	203,000	42.0 J	2.12	65.7	50.6	21.5 J	38.9	13.6 J	3,690	127	7,280	310.59	
KB-10-4.5-5.0																				

SUMMARY OF LABORATORY ANALYSIS RESULTS - SOIL

DIOXIN

THE LANDING - OLD MILL SECTION MT. SHASTA, CALIFORNIA

CONTRACT NO. 17-T4360 AND WORK ORDER NO. 1-360-1.0-102246

SAMPLE ID	SAMPLE DEPTH	2,3,7,8-TCDD	1,2,3,7,8-PeCDD	1,2,3,4,7,8-HxCI	1,2,3,6,7,8-HxCI	1,2,3,7,8,9-HxCI	1,2,3,4,6,7,8-HpC	осрр	2,3,7,8-TCDF	1,2,3,7,8-PeCDF	2,3,4,7,8-PeCDF	1,2,3,4,7,8-HxCI	1,2,3,6,7,8-HxCI	2,3,4,6,7,8-HxCI	1,2,3,7,8,9-HxCI	1,2,3,4,6,7,8-HpC	1,2,3,4,7,8,9-HpC	OCDF	2,3,7,8-TCDD TEQ ¹
											(ng/k	g)							
RB-11-1.5-2.0	2	4.7	11.4	5.73	17.4	12.9	226	724	2.04 J	0.21	0.082	0.24	0.34	0.148	0.554	3.24	0.249	3.56 J	22.54
RB-11-4.5-5.0	5	3.19	12.7	12.1	53.4	25.2	811	8562	11.0	1.09 J	5.26	5.43 J	4.71 J	6.74 J	1.95	393	6.07	204.00	44.33
RB-11-7.5-8.0	8	0.048	0.174	0.166	0.093	0.103	1.40	9.24 J	1.00	0.07	0.075	0.26	0.163	0.042	0.64	1.08	0.205	1.14	0.49
RB-12-0.5-1.0	1	4.54 J	42.8	41.5	272	130	4,070	35,700	72.7	3.65	60.7	29.3	19.4 J	29.1	10.5 J	2,080	35.8	1,240	199.05
RB-12-1.5-2.0	2	4.81	26.5	51.4	336	143	4,610	49,500	0.857	5.5	6.82	40.7	28.6	45.4	4.95	4,030	47.1	2,200	201
RB-12-4.5-5.0	5	11.4	34.9	69.6	281	139	3,410	31,200	0.619	5.26	5.4	38.9	37	50.4	5.00	6,150	38.3	2,630	216
RB-12-7.5-8.0	8	< 0.499	< 2.50	3.24	4.21	1.19 J	109	909	< 0.499	0.131 J	< 2.50	0.931 J	0.612 J	1.40 J	< 2.50	77.5	2.26	107	3.35
RB-14-0.5-1.0	1	0.895	5.67	8.86	73.7	22.8	915	7,740	0.638	2.23 J	3.3	12.2	11.1	17.7	1.21 J	916	13.3	543	43.4
RB-14-1.5-2.0	2	< 0.484	3.18	4.57	41.1	10.7	439	3,420	1.2	2.17 J	2.01 J	6.58	6.06	10.2	1.20 J	388	7.56	260	21.5
RB-14-4.5-5.0	5	11.4	54.8	10.3	1040	438	1,890	1,430	0.394 J	0.910 J	0.799 J	4.54	5.09	8.66	1.12 J	396	7.52	333	241
RB-14-7.5-8.0	8	35	48.9	28.3	87.5	51.7	743	1,980	0.460 J	0.766 J	0.527 J	1.42 J	2.25 J	1.73 J	< 2.50	32.4	1.19 J	16	110
RB-15-0.5-1.0	1	10.6	43.1	12.2	482	195	1,440	7,250	0.982	1.61 J	1.75 J	7.87	8.54	12.3	1.00 J	564	9.04	366	149
RB-15-1.5-2.0	2	7.27	17.4	15.6	151	60.3	1,590	10,000	< 0.501	< 2.50	0.509 J	2.17 J	2.31 J	3.45	0.441 J	130	3.77	106	68.6
RB-15-4.5-5.0	5	4.99	14.2	14.4	82.5	41.6	1,960	13,800	0.273 J	0.639 J	0.637 J	4.03	3.83	5.55	< 2.55	303	5.36	222	61.5
RB-15-7.5-8.0	8	< 0.487	< 2.43	< 2.43	3.5	1.23 J	12.6	16.1	< 0.487	0.243 J	0.337 J	5.61	2.53	3.36	< 2.43	195	2.21 J	46.6	3.85
RB-16-0.5-1.0	1	1.55	8.23	12.1	104	39.1	1,380	13,800	0.458 J	2.16 J	1.61 J	14.4	11.6	18.6	1.29 J	1,320	14.4	698	62.0
RB-16-1.5-2.0	2	3.78	18.8	27.2	181	85.6	2,940	44,400	0.417 J	2.33 J	1.69 J	20.6	16.5	25.1	2.76	2,160	26.7	1,450	124
RB-16-4.5-5.0	5	12.1	78.3	374	336	246	6,120	26,800	0.355 J	1.75 J	1.51 J	14	13	20.2	1.71 J	1,020	17.2	648	271
RB-16-7.5-8.0	8	2.53	10.5	12.3	72.4	43.5	1,180	5,030	< 0.506	0.357 J	0.388 J	1.74 J	1.79 J	1.82 J	< 2.53	117	1.32 J	53.5	41.0
BK-1-0.5-1.0	1	< 0.494	0.468 J	0.755 J	4.53	1.85 J	105	1310	< 0.494	0.513 J	0.521 J	1.36 J	1.06 J	1.53 J	0.369 J	36.4	1.09 J	25.9	3.61
GEOCON 201	4 Phase II 1	ESA																	
RB-1-1	1																		99
RB-1-2	2																		4.4
RB-1-5	5																		260
RR-2-1	1																		180

RB-1-1	1	99	
RB-1-2	2	4.4	
RB-1-5	5	260	
RB-2-1	1	180	
RB-2-2	2	110	
RB-2-5	5	190	
RB-3-1	1	91	
RB-3-2	2	3.5	
RB-3-5	5	13	
RB-4-1	1	58	
RB-4-2	2	0.59	
RB-4-5	5	4.0	
RB-5-1	1	51	
RB-5-2	2	70	
RB-5-5	5	36	

E & E 1000 TCA

E&E 1996 15A	\																			
OMRB-1-1C		<2.1	3.5	<15	37	19	560	7200	<3.8	< 0.57	< 5.2	8.2	8.7	<7	15	630	<26	200	30	
PAL																			220-700	

Notes:

 $ng/kg = nanograms \ per \ kilogram$

2,3,7,8-TCDD TEQ = total 2,3,7,8- tetrachlorodibenzo-p-dioxin toxicity equivalency

¹Dioxins/furans, reported as total 2,3,7,8-TCDD TEQ using the EPA-recommended 2005 World Health Organization toxicity equivalency factors

< = Less than the laboratory reporting limit

 $J = reported \ concentration \ estimated$

PAL = 220-700 ng/kg per DTSC HERO Note 2 com/ind and 50 ng/kg for residential

									TABLE 4											
						S	UMMARY C	F LABORATO	ORY ANALYS	IS RESULTS	- GROUND	WATER								
									DIOXIN											
								MT.	SHASTA, CAL	IFORNIA										
							CONTRACT	NO. 17-T4360) AND WORK	ORDER NO	. 1-360-1.0-10	02246								
SAMPLE ID	SAMPLE DATE	% SOLIDS	2,3,7,8-TCDD	1,2,3,7,8-PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,6,7,8-HxCDD	1,2,3,7,8,9-HxCDD	1,2,3,4,6,7,8-HpCDD	OCDD	2,3,7,8-TCDF	1,2,3,7,8-PeCDF	2,3,4,7,8-PeCDF	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDF	2,3,4,6,7,8-HxCDF	1,2,3,7,8,9-HxCDF	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	OCDF	2,3,7,8-TCDD T
												(pg/l)								
OLD MILL GROUNDWATE	R MONITORING WELLS																			
	3/18/2018																			5.61
OM-1	3/17/2016	0.18%	<10.9	22.5 J	41.3	134	88	2,570	18,900 B	< 0.911	<3.65	16.4	74.5	61.2	74	29	23,500 B	68	10,500	348
	3/12/2015	0.07%	< 5.46	8.56 J	11.5 J	35.9	21.5 J	606	4,200	< 5.46	1.87 J	4.91 J	24.3 J	19.8 J	27 J	4.08 J	6,900	22.1 J	3,030	102
	3/18/2018																			0.257
OM-2	3/17/2016	0.07%	< 0.778	<1.67	<1.60	21.9 J	5.49 J	521	6,240	< 0.602	< 0.809	< 0.704	7.31 J	6.3 J	9.52 J	< 2.05	982	11.3 J	651	22.3
	3/12/2015	0.08%	<5.47	<27.4	<27.4	10.4 J	<27.4	167	1,570	< 5.47	<27.4	<27.4	3.07 J	3.14 J	4.51 J	<27.4	413	6.32 J	257	8.52
	3/18/2018																			0.24
OM-3	3/17/2016	0.07%	< 0.857	<1.09	< 0.956	2.45 J	<1.12	35	388 B	< 0.761	<1.34	<1.17	< 0.706	< 0.660	< 0.732	<1.12	30.9 B	< 0.937	<17.1	1.02
	3/12/2015	0.34%	<5.34	2.56 J	9.84 J	27.9	10.8 J	474	5,800	< 5.34	<26.7	2.29 J	5.76 J	6.64 J	8.35 J	<26.7	356	6.89 J	201	20.3
OM-3A (duplicate)	3/12/2015	0.43%	<5.32	<26.6	7.44 J	26.6	9.45 J	420	5,130	< 5.32	<26.6	<26.6	6.00 J	<26.6	<26.6	<26.6	329	5.18 J	194	14.1
	3/18/2018																			0.168
OM-4	3/17/2016	0.08%	< 0.610	<1.55	< 0.924	<1.7	<1.01	23.5 J	157	< 0.484	< 0.594	< 0.565	< 0.622	< 0.643	< 0.596	< 0.909	26.3	< 0.850	18.7 J	0.551
	3/12/2015	0.06%	<5.56	<27.8	<27.8	4.05 J	<27.8	62	625	<5.56	<27.8	<27.8	<27.8	<27.8	<27.8	<27.8	52.1	<27.8	<55.6	1.73
	3/18/2018																			3.62
OM-5	3/17/2016	0.24%	< 0.603	11.7 J	21.2 J	67.5	42.3	897	6820 B	<1.17	1.99 J	4.9 J	9.68 J	8.91 J	12.7 J	4.64 J	924 B	7.48 J	390	50.4
	3/12/2015	1.03%	6.05	27	49.4	152	93.4	2,050	15,500	<5.41	4.46 J	4.73 J	29.1	29.8	43.6	<27.0	3,000	25.1 J	1,110	130
OM-5A (duplicate)	3/17/2016	0.12%	<1.25	<2.64	2.11 J	<11.1	<7.5	174	1,260	< 0.727	< 0.702	<1.119	< 0.954	< 0.990	< 0.992	<1.44	155	<1.52	74.6	3.9
RAB GROUNDWATER	SAMPLES																			
RB-14-GW	3/4/2015	2.61%	1,680	5,620	7,600	34,200	16,400	430,000	1,190,000	24.9	79.6	71.1	494	449	641	40.7	31,700	511	15,100	18,300
RB-24-GW (dup of RB-14)	3/4/2015	3.16%	3,750	13,200	19,400	81,200	39,200	967,000	3,180,000	60	200	149	1,320	1,190	1,670	157	80,800	1,300	38,100	42,900
RB-15-GW	3/4/2015	0.22%	<6.10	9.47 J	11.3 J	85.0	40.0	1,260	11,100	<6.10	2.09 J	4.31 J	26.2 J	17.8 J	27.1 J	<30.5	1,090	16.4 J	437	58.7
RB-25-GW (dup of RB-15)	3/4/2015	N/A	13.9	52.2	14.2	569	233	1750	7230	1.42	1.97 J	3.05	7.8	8.84	13.2	1.28 J	542	8.84	360	177
RB-16-GW	3/4/2015	0.56%	<5.93	23.5 J	40	210	128	3,370	20,000	<5.93	6.56 J	7.57 J	33.6	49.5	97.6	7.99 J	4,570	91	5,010	170
KD-10-0 II	PAL ¹	0.5070	\J.JJ	و د.د.	70	210	120	3,370	20,000	\J.JJ	0.503	1.513	33.0	77.0	71.0	1.773	7,570	/1	5,010	30 ²

Notes:

 $pg/l = picograms \ per \ liter$

2,3,7,8-TCDD TEQ = total 2,3,7,8- tetrachlorodibenzo-p-dioxin toxicity equivalency

¹Dioxins/furans, reported as total 2,3,7,8-TCDD TEQ using the EPA-recommended 2005 World Health Organization toxicity equivalency factors

PAL = Project Action Level

1 PALs based on project specific goals

² California Maximum Contaminant Level for drinking water

Bold = concentrations > PALs

< = Less than the laboratory reporting limit

J = value estimated

SUMMARY OF LABORATORY ANALYSIS RESULTS - SOIL

METALS

THE LANDING - MT. SHASTA BUSINESS PARK ASSESSMENT PROJECT

FORMER ROSEBURG LUMBER "OLD MILL"

MT. SHASTA, CALIFORNIA

	1	1						MT.	SHASTA,	CALIFORN	NIA									
SAMPLE ID	SAMPLE DEPTH (feet)	SAMPLE DATE	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Mercury	Hexavalent Chromium
											(1	ng/kg)								
	Phase II Es	SA	ı																	
Former Refuse		12/2/2012	2.0	1.0		1.0	1.0	10	2.7			1.0	10	1.0	1.0	1.0	21	10	0.10	
RB-1-1	1	12/3/2013	<2.0	<1.0	63	<1.0	<1.0	10	2.7	11	7.5	<1.0	12	<1.0	<1.0	<1.0	21	19	<0.10	
RB-1-2	2	12/3/2013	<2.0	<1.0	39	<1.0	<1.0	7.6	1.7	6.0	2.6	<1.0	9.3	<1.0	<1.0	<1.0	8.9	10	<0.10	
RB-1-5	5	12/3/2013	<2.0	1.2	270	<1.0	<1.0	8.5	1.4	34	9.3	1.2	11	<1.0	<1.0	<1.0	9.8	56	<0.10	
RB-2-1 RB-2-2	1 2	12/3/2013 12/3/2013	<2.0 <2.0	1.9 3.1	320 380	<1.0 <1.0	<1.0 <1.0	24 25	4.0 3.3	30 44	13 15	<1.0 <1.0	38 29	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	15 11	45 98	<0.10 <0.10	
RB-2-5	5	12/3/2013	<2.0	2.2	100	<1.0	<1.0	23 11	3.0	17	6.5	<1.0	12	<1.0	<1.0	<1.0	31	20	0.13	
RB-3-1	1	12/3/2013	<2.0	<1.0	30	<1.0	<1.0	4.9	1.5	5.9	2.9	<1.0	6.2	<1.0	<1.0	<1.0	8.5	9.9	<0.10	
RB-3-2	2	12/3/2013	<2.0	<1.0	5.5	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.3	<0.10	
RB-3-5	5	12/3/2013	<2.0	2.5	610	<1.0	<1.0	30	5.3	49	25	<1.0	46	<1.0	<1.0	<1.0	24	97	<0.10	
RB-4-1	1	12/3/2013	<2.0	<1.0	34	<1.0	<1.0	3.3	1.4	4.2	1.2	<1.0	3.1	<1.0	<1.0	<1.0	8.4	8.3	< 0.10	
RB-4-2	2	12/3/2013	<2.0	<1.0	43	<1.0	<1.0	5.8	2.1	9.3	2.9	<1.0	4.9	<1.0	<1.0	<1.0	19	15	< 0.10	
RB-4-5	5	12/3/2013	<2.0	<1.0	40	<1.0	<1.0	7.0	2.1	7.6	2.8	<1.0	5.3	2.3	<1.0	<1.0	17	14	< 0.10	
RB-5-1	1	12/3/2013	<2.0	3.2	180	<1.0	<1.0	19	5.2	39	5.8	<1.0	24	<1.0	<1.0	<1.0	48	24	< 0.10	
RB-5-2	2	12/3/2013	<2.0	3.9	210	<1.0	<1.0	27	7.2	18	7.7	<1.0	25	<1.0	<1.0	<1.0	68	26	< 0.10	
RB-5-5	5	12/3/2013	<2.0	3.4	180	<1.0	<1.0	29	6.4	16	5.9	<1.0	26	<1.0	<1.0	<1.0	69	24	< 0.10	
E&E 2005 T	SA		_																	
OM-1-0.5	0.5	4/27/2005	<7.0 J	<1.2 J	<18.3 J	<0.21 J	< 0.58	5.2 J	1.6 J	11.4	2.4 J		9.0 J	<4.1	<1.2	<2.9 J	29.0	11.8 J	0.072 J	< 0.9
OM-1-2	2	4/27/2005	<8.8 J	2.2 J	112 J	1.2 J	0.29 J	35.1 J	7.2 J	40.4 J	9.1		35.0 J	<5.1 J	<1.5	<3.7	80.1 J	29.8	< 0.15	<1.2
OM-1-7.5	7.5	4/27/2005	<8.0 J	1.0 J	46.6 J	<0.57 J	0.21 J	22.2 J	2.5 J	19.1 J	2.7		12.7 J	<4.7 J	<1.3	<3.3	46.4 J	21.1 J	< 0.13	< 0.1
OM-2-0.5	0.5	4/27/2005	<7.9 J	2.3 J	117 J	<0.71 J	0.26 J	22.1 J	4.0 J	27.9 J	34.4		20.2 J	<4.6 J	<1.3	<3.3	54.8 J	45.6 J	0.16	
OM-2-2	2	4/27/2005	<8.3 J	3.2	416 J	<0.97 J	0.32 J	32.1 J	6.5 J	30.7 J	8.4		26.7 J	<4.8	<1.4	<3.5	70.3 J	38.9 J	< 0.14	
OM-2-7.5	7.5	4/27/2005	<8.3 J	2.7 J	117 J	<1.0 J	0.35 J	39.8 J	4.1 J	26.8 J	7.5		33.0 J	<4.9	<1.4	<3.5	73.3 J	33.2 J	0.12 J	
OM-3-0.5	0.5	4/27/2005	<7.0 J	<0.60 J	27.7 J	<0.18 J	0.20 J	6.5 J	1.8 J	16.5 J	25.6		10.6 J	<4.1 J	<1.2	<2.9	21.6 J	31.8 J	0.040 J	
OM-3-2	2	4/27/2005	<6.9 J	<1.1	12.0 J	<0.090 J	< 0.57	28.4 J	17.3 J	82.6 J	2.2		89.8 J	<4.0 J	<1.1	<2.9	19.6 J	30.6 J	<0.11	<0.5
OM-3-7.5	7.5	4/27/2005	<9.1 J	<2.1 J	143 J	<0.92 J	0.25 J	33.0 J	5.9 J	26.8 J	9.0		27.5 J	<5.3 J	<1.5	<3.8	78.6 J	65.2 J	0.053 J	<1.2
OM-4-0.5	0.5 2	4/27/2005 4/27/2005	<8.3 J	<2.3 J	132 J	<0.92 J	0.25 J	26.1 J	4.0 J	29.0 J	23.1		29.7 J	<4.8 J	<1.4	<3.4	62.9 J	43.3 J	2.4	
OM-4-2	۷	4/2//2003	<8.2 J	<2.4 J	252 J	<0.92 J	0.28 J	28.8 J	6.6 J	27.2 J	7.7		28.3 J	<4.8 J	<1.4	<3.4	66.8 J	34.1 J	0.17	

SUMMARY OF LABORATORY ANALYSIS RESULTS - SOIL

METALS

THE LANDING - MT. SHASTA BUSINESS PARK ASSESSMENT PROJECT

FORMER ROSEBURG LUMBER "OLD MILL"

MT. SHASTA, CALIFORNIA

SAMPLE ID	SAMPLE DEPTH (feet)	SAMPLE DATE	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Mercury	Hexavalent Chromium
											(1	ng/kg)								
OM-4-7.5	7.5	4/27/2005	<8.2 J	<2.3 J	38.9 J	<0.60 J	0.25 J	18.9 J	1.9 J	17.4 J	3.1		10.3 J	<4.8 J	<1.4	<3.4	46.0 J	18.1 J	< 0.14	
OM-5-0.5	0.5	4/27/2005	<8.1 J	<2.7	136 J	<0.85 J	0.29 J	25.6 J	4.7 J	27.4 J	7.6		23.6 J	<4.7 J	<1.4	<3.4	64.0 J	36.1 J	0.045 J	< 0.5
OM-5-2	2	4/27/2005	<8.0 J	<2.5 J	311 J	<0.72 J	0.18 J	27.7 J	3.3 J	21.4 J	7.1		21.5 J	<4.7 J	<1.3	<3.3	60.2 J	26.4 J	< 0.13	< 0.6
OM-5-7.5	7.5	4/27/2005	<9.9 J	<2.9 J	185 J	<1.3 J	0.36 J	45.4 J	6.3 J	35.1 J	9.3		47.4 J	<5.8 J	<1.6	<4.1	101 J	43.4 J	0.16 J	<1.1
OM-6-0.5	0.5	4/27/2005	<8.1 J	<1.8 J	138 J	<1.2 J	0.37 J	3.3 J	8.0 J	28.7 J	9.2		30.8 J	<4.7 J	<1.3	<3.4	73.6 J	39.7 J	$0.10 \mathrm{~J}$	
OM-6-4	2	4/27/2005	<9.0 J	<2.3 J	161 J	1.2 J	0.53 J	41.1 J	10.5 J	30.3 J	8.8		45.6 J	<5.3 J	<1.5	<3.8	86.5 J	40.4 J	< 0.15	
OM-6-7.5	7.5	4/27/2005	<7.6	<2.4 J	144 J	0.83 J	0.15 J	30.9 J	5.7 J	31.1	6.6		26.1 J	<4.4	<1.3	<3.2	80.0 J	35.6 J	< 0.13	
OM-7-0.5	0.5	4/27/2005	<8.1	3.2	137 J	1.3 J	0.40 J	30.5 J	6.0 J	32.1 J	9.6		29.9 J	<4.7	<1.3	<3.4	78.1 J	36.9 J	< 0.13	< 0.6
OM-7-2	2	4/27/2005	<9.0	<2.5 J	163 J	1.4 J	0.42 J	28.9 J	7.6 J	25.0 J	10.2		31.7 J	<5.2	<1.5	<3.7	70.3 J	40.2 J	< 0.15	< 0.7
OM-7-7.5	7.5	4/27/2005	<9.8	1.8 J	138 J	1.3 J	0.60 J	43.5 J	2.2 J	30.4 J	9.6		28.6 J	< 5.7	<1.6	<4.1	86.6 J	28.6 J	< 0.16	<1.1
OM-8-0.5	0.5	4/27/2005	<7.9	2.4 J	126 J	1.0 J	0.35 J	25.1 J	6.0 J	28.0 J	7.3		24.3 J	<4.6	<1.3	<3.3	53.0 J	33.1 J	0.067 J	
OM-8-2	2	4/27/2005	<8.1	1.9 J	122 J	0.97 J	0.36 J	24.3 J	4.8 J	25.9 J	6.9		24.1 J	<4.7	<1.3	<3.4	58.0 J	29.5 J	0.054 J	
OM-8-7.5	7.5	4/27/2005	<9.0	3.0	255 J	1.4 J	0.59 J	49.3 J	14.1 J	35.4 J	10.8		45.7 J	< 5.2	<1.5	<3.7	106 J	45.1 J	< 0.15	
OM-9-0.5	0.5	4/27/2005	<8.7	3.5	202 J	1.5 J	0.67 J	33.2 J	6.8 J	29.6 J	11.1		34.3 J	< 5.1	<1.5	<3.6	78.5 J	41.2 J	< 0.15	< 0.6
OM-9-2	2	4/27/2005	<8.8	1.9 J	168 J	1.3 J	0.49 J	36.8 J	7.6 J	27.9 J	9.4		35.9 J	<5.1	<1.5	<3.7	79.3 J	36.6 J	< 0.15	<1.2
OM-9-7.5	7.5	4/27/2005	<7.7	1.6 J	106 J	0.77 J	0.24 J	31.5 J	7.5 J	30.5 J	7.4		29.3 J	<4.5	<1.3	<3.2	68.6 J	40.8 J	< 0.13	< 0.5
OM-10-0.5	0.5	4/27/2005	<1.5 J	2.7 J	132	0.81 J	0.50 J	27.5 J	6.1 J	39.3	70.3 J		30.4	< 5.1	<1.5	<3.6 J	68.1	71.3	2.3	
OM-10-2	2	4/27/2005	<8.5 J	3.0	122 J	1.1 J	0.37 J	30.0 J	6.2 J	34.9 J	23.9		28.2 J	<4.9 J	<1.4	<3.5	72.3 J	46.4 J	8.0	
OM-10-7.5	7.5	4/27/2005	<9.0 J	2.7 J	109 J	1.4 J	0.42 J	39.4 J	5.6 J	25.6 J	10.0		35.8 J	<5.2 J	<1.5	<3.7	81.0 J	36.8 J	1.2	
OM-16-4	4	4/27/2005	<8.9 J	1.7 J	146 J	<1.2 J	0.57 J	39.6 J	8.8 J	28.1 J	8.7		37.3 J	<5.2 J	<1.5	<3.7	83.9 J	38.1 J	0.061 J	
OMLP-3B-0.5	0.5	4/27/2005	<8.7 J	3.9	168	1.5	0.49 J	39.8	2.1 J	17.8	9.0		24.5	<5.1 J	<1.4	<3.6	57.3	32.1	< 0.14	<1.1
OMLP-3B-2	2	4/27/2005	<8.9 J	3.5	299	1.5	0.85 J	66.9	13.7 J	28.8	13.4		71.8	<5.2 J	<1.5	<3.7	134	56.5	0.091 J	<1.2
OMLP-5B-0.5	0.5	4/27/2005	<9.5 J	3.5	282	1.1 J	0.55 J	68.4	11.9 J	33.2	21.6		75.8	<5.5 J	<1.6	<4.0	103	64.5	< 0.16	
OMLP-5B-2	2	4/27/2005	<8.4 J	2.7 J	304	<0.88 J	0.44 J	51.4	8.7 J	40.8	11.1		44.0	<4.9 J	<1.4	<3.5	127	40.8	$0.048 \; \mathrm{J}$	
BG-1-0.5	0.5	4/27/2005	<7.6 J	1.2 J	118	<1.0 J	0.54 J	48.4	10.5 J	38.5	27.5		56.6	<4.4 J	<1.3	<3.2	90.1	64.4	< 0.13	< 0.5
BG-2-0.5	0.5	4/27/2005	<8.3 J	<1.4	37.8 J	<1.1 J	0.59 J	6.9	1.8 J	20.6	8.3		7.4 J	<4.8 J	<1.4	<3.5	40.7	8.6 J	< 0.14	< 0.1
BG-2-2	2	4/27/2005	<0.96 J	<1.4	14.4 J	<1.1 J	0.54 J	10.8	<7.0	18.4	7.5		11.9	<4.9 J	<1.4	<3.5	36.9	7.5 J	< 0.14	0.2 J
BG-2-7.5	7.5	4/27/2005	<1.6 J	0.97 J	199	<1.3 J	0.70 J	14.4	<7.1	34.1	9.5		13.9	<5.0 J	<1.4	<3.6	50.0	21.9	0.057 J	< 0.1
BG-3-0.5	0.5	4/27/2005	<7.7 J	2.4 J	429	1.5	0.93 J	48.7	11.2 J	45.6	23.0		42.7	<4.6 J	<1.3	<3.2	98.4	55.7	< 0.13	< 0.5
BG-4-0.5	0.5	4/27/2005	<7.8 J	1.8 J	194	<1.3	0.66 J	43.6	6.1 J	39.6	20.5		39.1	<4.6 J	<1.3	<3.3	94.3	49.7	< 0.13	<1.1

SUMMARY OF LABORATORY ANALYSIS RESULTS - SOIL

METALS

THE LANDING - MT. SHASTA BUSINESS PARK ASSESSMENT PROJECT

FORMER ROSEBURG LUMBER "OLD MILL"

MT. SHASTA, CALIFORNIA

SAMPLE ID	SAMPLE DEPTH (feet)	SAMPLE DATE	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Mercury	Hexavalent Chromium
E&E 1998 T	SA		ı																	
OMDT-5-5	5	5/1/1998	4.8 J	5.7	224	1.1 J		42.0 J	14.6 J	31.3	9.1		35.5 J		< 0.32		87.4	40.5 J	< 0.08	
OMDT-10-5	5	5/1/1998	3.3 J	7.3	118	1.2 J		25.8 J	7.1 J	19.3	9.3		22.1 J		0.62 J		56.9	33.9 J	< 0.07	
OMTP-2-1	1	5/1/1998	1.4 J	< 0.63	25.3 J	< 0.21		18.9 J	9.4 J	61.8	8.0		42.2 J		< 0.21		19.3	109 J	< 0.06	
OMWA-1-1	1	5/1/1998	3.6 J	4.1	273	0.57 J		29.7 J	6.8 J	39.0	33.1		36.9 J		< 0.28		53.2	82.9 J	< 0.07	
OMLP-2-1	1	5/1/1998	4.5 J	8.0	412	1.0 J		74.5 J	14.7 J	31.9	11.6		84.8 J		< 0.32		102	76.1 J	< 0.07	
OMLP-5-2	2	5/1/1998	1.6 J	3.2	113	0.38 J		80.5 J	10.4 J	22.6	9.9		82.6 J		< 0.27		57.0	35.3 J	< 0.07	
Project Action I	Levels																			
RSL/DTSC SL (Commercial/Ind	ustrial)	580	0.36	220,000	210	7.3	170,000	350	47,000	320	5,800	3,100	5,800	1,500	12	1,000	350,000	4.5	6.3
Background Co	ncentrations (1)				•	•											•	•	•	
	Minimum		0.15	0.6	133	0.25	0.05	23	2.7	9.1	12.4	0.1	9.0	0.015	0.10	0.17	39	88	0.10	
	Maximum		1.95	11	1,400	2.70	1.70	1,579	46.9	96.4	97.1	9.6	509	0.430	8.30	1.10	288	236	0.90	
	Mean		0.60	3.5	509	1.28	0.36	122	14.9	28.7	23.9	1.3	57	0.058	0.80	0.56	112	149	0.26	

Notes:

mg/kg = milligrams per kilogram

< = Less than laboratory reporting limits

RSLs = U.S. Environmental Protection Agency Region 9, Regional Screening Levels, Updated November 2017

 $DTSC\ SL = California\ Department\ of\ Toxic\ Substances\ Control\ Modified\ Screening\ Level$

--- = Not analyzed

⁽¹⁾ Background Concentrations of Trace and Major Elements in California Soils (Kearney Foundation of Soil Science, Division of Agricultural and Natural Resources, University of California, March 1996)

SUMMARY OF LABORATORY ANALYSIS RESULTS - GROUNDWATER AND SURFACE WATER

METALS

THE LANDING - OLD MILL SECTION

MT. SHASTA, CALIFORNIA

Sample ID	Sample Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	read (mg/l)	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Mercury
	1/18/2018	< 0.010	< 0.010	0.85	< 0.0030	< 0.0030	0.0079	0.016	0.05	0.034	< 0.005	0.0082	< 0.010	< 0.0030	< 0.015	0.039	< 0.025	< 0.20
OM-1	3/17/2016	< 0.010	< 0.010	0.24	< 0.0030	< 0.0030	0.024	0.0072	0.03	0.02	< 0.005	0.020	< 0.010	< 0.0030	< 0.015	0.074	0.039	< 0.20
	3/12/2015	0.035	0.021	1.20	0.016	< 0.0030	0.11	0.029	0.16	0.084	< 0.005	0.098	< 0.010	< 0.0030	< 0.015	0.37	0.190	< 0.20
	1/18/2018	0.014	0.014	0.18	0.01	0.014	0.02	0.018	0.013	0.024	0.016	0.018	< 0.01	0.0089	0.02	0.019	< 0.025	< 0.20
OM-2	3/17/2016	< 0.010	< 0.010	0.16	< 0.0030	< 0.0030	0.0084	0.0034	< 0.0090	< 0.005	< 0.005	0.0054	< 0.010	< 0.0030	< 0.015	0.022	< 0.025	< 0.20
	3/12/2015	0.013	0.011	1.20	0.0058	< 0.0030	0.057	0.023	0.06	0.018	< 0.005	0.045	< 0.010	< 0.0030	< 0.015	0.16	0.110	< 0.20
-	1/18/2018	< 0.010	< 0.010	0.36	< 0.0030	< 0.0030	0.0059	0.0059	0.019	0.020	< 0.005	0.0066	< 0.010	< 0.0030	< 0.015	0.033	0.130	< 0.20
OM-3	3/17/2016	< 0.010	< 0.010	0.35	< 0.0030	< 0.0030	0.028	0.011	0.036	0.022	< 0.005	0.022	< 0.010	< 0.0030	< 0.015	0.058	0.016	< 0.20
	3/12/2015	< 0.010	< 0.010	1.60	0.0044	< 0.0030	0.037	0.02	0.11	0.042	< 0.005	0.031	< 0.010	< 0.0030	< 0.015	0.13	0.370	< 0.20
OM-3A	3/17/2016	< 0.010	< 0.010	0.29	< 0.0030	< 0.0030	0.021	0.0096	0.028	0.018	< 0.005	0.017	< 0.010	< 0.0030	< 0.015	0.045	0.140	< 0.20
(duplicate)	3/12/2015	0.023	0.011	1.40	0.01	< 0.0030	0.1	0.035	0.13	0.069	< 0.005	0.081	< 0.010	< 0.0030	< 0.015	0.23	0.4	< 0.20
	1/18/2018	< 0.010	< 0.010	0.11	< 0.0030	< 0.0030	< 0.0030	0.0034	< 0.0090	0.015	< 0.005	< 0.005	< 0.010	< 0.0030	< 0.015	0.012	< 0.025	< 0.20
OM-4	3/17/2016	< 0.010	< 0.010	0.048	< 0.0030	< 0.0030	0.0036	< 0.0030	< 0.0090	< 0.005	< 0.005	< 0.005	< 0.010	< 0.0030	< 0.015	0.0057	< 0.025	< 0.20
	3/12/2015	0.022	< 0.010	1.10	0.013	< 0.0030	0.095	0.027	0.1	0.032	< 0.005	0.075	< 0.010	< 0.0030	< 0.015	0.18	0.19	< 0.20
	1/18/2018	< 0.010	< 0.010	0.69	< 0.0030	< 0.0030	0.012	0.014	0.068	0.025	< 0.005	0.013	< 0.010	< 0.0030	< 0.015	0.064	0.093	< 0.20
OM-5	3/17/2016	< 0.010	< 0.010	0.18	< 0.0030	< 0.0030	0.058	0.014	0.034	0.013	< 0.005	0.049	< 0.010	< 0.0030	< 0.015	0.057	0.05	< 0.20
	3/12/2015	0.1	0.024	3.30	0.045	< 0.0030	1.1	0.14	0.62	0.19	< 0.005	0.86	< 0.010	< 0.0030	< 0.015	0.97	0.71	0.42
Surface Water	Samples																	
LP-11-SW	3/5/2015	< 0.010	< 0.010	0.0049	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0090	< 0.005	< 0.005	< 0.005	< 0.010	< 0.0030	< 0.015	0.0045	0.058	< 0.20
LP-12-SW	3/5/2015	< 0.010	< 0.010	0.0052	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0090	< 0.005	< 0.005	< 0.005	< 0.010	< 0.0030	< 0.015	0.0036	< 0.025	< 0.20
LP-22-SW	3/5/2015	< 0.010	< 0.010	0.0051	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0090	< 0.005	< 0.005	< 0.005	< 0.010	< 0.0030	< 0.015	0.0037	< 0.025	< 0.20
LP-13-SW	3/5/2015	< 0.010	< 0.010	0.0053	< 0.0030	< 0.0030	< 0.0030	< 0.0030	< 0.0090	< 0.005	< 0.005	< 0.005	< 0.010	< 0.0030	< 0.015	0.0033	< 0.025	< 0.20
PA	ALs	0.006	0.010	1.0	0.004	0.005	0.05	N/A	1.3	0.015	N/A	0.1	0.05	N/A	0.002	N/A	N/A	0.002

Notes:

 $mg/l = milligrams \ per \ liter$

< = Less than laboratory reporting limits

PALs = California Maximum Contaminant Levels for drinking water

MONITORING WELL INFORMATION

THE LANDING – NEW MILL SECTION

MT. SHASTA, CALIFORNIA

CONTRACT NO. 15-T4055 AND WORK ORDER NO. 1-055-1.0-102246

MONITORING WELL ID	TOTAL DEPTH OF WELL (feet BTOC)	SCREEN LENGTH (feet)	DEPTH TO WATER (feet BTOC)	ELEVATION OF TOP OF CASING (feet MSL)	GROUNDWATER ELEVATION (feet MSL)
OM-1	16.85	7	5.10	3511.04	3505.94
OM-2	21.98	10	8.88	3509.07	3500.19
OM-3	25.6	15	9.62	3503.29	3493.67
OM-4	30.38	15	6.24	3490.79	3484.55
OM-5	32.83	15	20.31	3503.14	3482.83

Notes: BTOC = below top of casing

MSL = mean sea level

GPS COORDINATES - SAMPLE LOCATIONS & WELLS

THE LANDING – OLD MILL SECTION MT. SHASTA, CALIFORNIA

CONTRACT NO. 17-T4360 AND WORK ORDER NO. 1-360-1.0-102246

BORING ID	DATE	LATITUDE	LONGITUDE
Westin 2016 PHASE II			
OM-SS-01	6/16/2016	41.3011891027	-122.3068513540
OM-SS-02	6/16/2016	41.3006587607	-122.3068153500
OM-SS-03	6/16/2016	41.3003338591	-122.3066001220
OM-SS-04	6/16/2016	41.3011492870	-122.3074158970
OM-SS-05	6/16/2016	41.3007550045	-122.3072755260
OM-SS-06	6/16/2016	41.3003438403	-122.3068900360
OM-SS-07	6/16/2016	41.3008341305	-122.3074975720
OM-SS-08	6/16/2016	41.3004266282	-122.3077415310
OM-SS-09	6/16/2016	41.3003604359	-122.3080095350
OM-SS-10	6/16/2016	41.3004956270	-122.3082257390
OM-SS-11	6/16/2016	41.3006212744	-122.3082536650
OM-SS-12	6/16/2016	41.3012019025	-122.3083700110
OM-SS-13	6/16/2016	41.3010128183	-122.3081547980
OM-SS-14	6/16/2016	41.3010532828	-122.3078553910
OM-SS-15	6/16/2016	41.3011974764	-122.3076337470
OM-SS-16	6/16/2016		
OM-SS-17	6/16/2016	41.3009158553	-122.3082068670
Geocon 2015 TSI			
ODT-23	Mar-15	41.30142497	-122.307096
ODT-24	Mar-15	41.30131738	-122.3070232
ODT-25	Mar-15	41.30121715	-122.3069386
ODT-26	Mar-15	41.30128481	-122.306834
BR-14	Mar-15	41.30122169	-122.307462
BR-15	Mar-15	41.30116901	-122.3074372
BR-16	Mar-15	41.30116827	-122.3077228
BR-17	Mar-15	41.30106965	-122.307625
BR-18	Mar-15	41.30106558	-122.3077347
BR-19	Mar-15	41.3010256	-122.307707
BR-20	Mar-15	41.30104105	-122.3076639
RB-6	Mar-15	41.30104128	-122.3083362
RB-7	Mar-15	41.30103005	-122.3082585
RB-8	Mar-15	41.3010072	-122.3081079
RB-9	Mar-15	41.30092552	-122.3080103
RB-10	Mar-15	41.30071882	-122.307986
RB-11	Mar-15	41.30067795	-122.3080904
RB-12	Mar-15	41.30061774	-122.3082242
RB-13	Mar-15	41.30097635	-122.3083061
RB-14	Mar-15	41.30088161	-122.3082092
RB-15	Mar-15	41.30077346	-122.3081238
RB-16	Mar-15	41.30072297	-122.3083442

GPS COORDINATES - SAMPLE LOCATIONS & WELLS

THE LANDING – OLD MILL SECTION MT. SHASTA, CALIFORNIA

CONTRACT NO. 17-T4360 AND WORK ORDER NO. 1-360-1.0-102246

BORING ID	DATE	LATITUDE	LONGITUDE
LP-11	Mar-15	41.30200251	-122.3074444
LP-12	Mar-15	41.30157396	-122.3079707
LP-13	Mar-15	41.30129601	-122.3084314
LP-14	Mar-15	41.30208593	-122.3075088
LP-15	Mar-15	41.30159488	-122.3080113
LP-16	Mar-15	41.30130944	-122.3084408
BK-1	Mar-15	41.30224687	-122.3080743
Monitoring Wells			
OM-1	2010	41.3022908	-122.3070683
OM-2	2010	41.30146302	-122.3069482
OM-3	2010	41.30112956	-122.3075923
OM-4	2010	41.3005948	-122.3082021
OM-5	2010	41.3011461	-122.308675
Geocon Phase II 2013/2014			
ODT-6	12/3/2013	41.301473546	-122.307047538
ODT-7	12/3/2013	41.301420040	-122.307003191
ODT-8	12/3/2013	41.301382063	-122.306890836
ODT-9	12/3/2013	41.301426820	-122.306797408
ODT-10	12/3/2013	41.301567947	-122.307097500
ODT-11	12/3/2013	41.301697137	-122.307087072
ODT-12	12/2/2013	41.301795971	-122.306976336
ODT-13	12/2/2013	41.301792028	-122.306901923
ODT-14	12/2/2013	41.301725465	-122.306983259
ODT-15	12/3/2013	41.301709238	-122.306839906
ODT-16	12/3/2013	41.301840411	-122.306614766
ODT-17	12/3/2013	41.301798286	-122.306540477
ODT-18	12/3/2013	41.301724342	-122.306572572
ODT-19	12/3/2013	41.301755929	-122.306647978
ODT-20	12/3/2013	41.301695604	-122.306694512
ODT-21	12/3/2013	41.301551272	-122.306846191
ODT-22	12/3/2013	41.301525334	-122.306788379
ODT-23	12/3/2013	41.301445427	-122.306645043
ODT-24	12/3/2013	41.301510800	-122.306589474
ODT-25	12/3/2013	41.301716909	-122.306769447
ODT-26	12/3/2013	41.301657910	-122.306819483
ODT-27	12/2/2013	41.301773486	-122.306858430
ODT-28	12/2/2013	41.301702680	-122.306920315
ODT-32	12/2/2013	41.301358809	-122.306918674

GPS COORDINATES - SAMPLE LOCATIONS & WELLS

THE LANDING – OLD MILL SECTION MT. SHASTA, CALIFORNIA

CONTRACT NO. 17-T4360 AND WORK ORDER NO. 1-360-1.0-102246

BORING ID	DATE	LATITUDE	LONGITUDE
BR-1	12/2/2013	41.301183751	-122.307547962
BR-2	12/2/2013	41.301155431	-122.307537365
BR-3	12/2/2013	41.301182158	-122.307497137
BR-4	12/2/2013	41.301216061	-122.307532705
BR-5	12/2/2013	41.301188601	-122.307577292
BR-6	12/2/2013	41.301173553	-122.307624658
BR-7	12/2/2013	41.301140115	-122.307617043
BR-8	12/2/2013	41.301201999	-122.307622455
BR-9	12/2/2013	41.301105951	-122.307677237
BR-10	12/2/2013	41.301159617	-122.307667434
BR-11	12/2/2013	41.301112363	-122.307649226
BR-12	12/2/2013	41.301083634	-122.307681296
BR-13	12/2/2013	41.301129844	-122.307720763
LP-1	12/4/2013	41.301972286	-122.307736999
LP-2	12/4/2013	41.301999953	-122.307651922
LP-3	12/4/2013	41.302041494	-122.307799809
LP-4	12/4/2013	41.301904895	-122.307738041
LP-5	12/4/2013	41.301955210	-122.307828828
LP-6	12/4/2013	41.301656546	-122.307632439
LP-7	12/4/2013	41.301585152	-122.307620647
LP-8	12/4/2013	41.301644658	-122.307548287
LP-9	12/4/2013	41.301781628	-122.307616207
LP-10	12/4/2013	41.301677734	-122.307732811
RB-1	12/3/2013	41.300876277	-122.308200723
RB-2	12/3/2013	41.300774487	-122.308132401
RB-3	12/3/2013	41.300923988	-122.308056418
RB-4	12/3/2013	41.300975448	-122.308285900
RB-5	12/3/2013	41.300870616	-122.308357305
SS-1	12/3/2013	41.300275759	-122.308384950
URS 2007 TSI			
ODT-1	6/25/2007	41.301588899	-122.306657148
ODT-2	6/25/2007	41.301548031	-122.306832715
ODT-3	6/25/2007	41.301447600	-122.306884680
ODT-4	6/25/2007	41.301486076	-122.307382935
ODT-5	6/25/2007	41.301351049	-122.307352266
E&E 2005 TSI			
BG-1	4/21/2005	41.30078798	-122.30642998
BG-2*	4/21/2005	41.29725300	-122.30639400

GPS COORDINATES - SAMPLE LOCATIONS & WELLS

THE LANDING – OLD MILL SECTION MT. SHASTA, CALIFORNIA

CONTRACT NO. 17-T4360 AND WORK ORDER NO. 1-360-1.0-102246

BORING ID	DATE	LATITUDE	LONGITUDE
BG-3	4/21/2005	41.29558991	-122.30546305
OM-1*	4/21/2005	41.30164400	-122.30661600
OM-2	4/21/2005	41.30171986	-122.30672760
OM-3	4/21/2005	41.30171428	-122.30686215
OM-4	4/21/2005	41.30159493	-122.30669970
OM-5	4/21/2005	41.30164933	-122.30674272
OM-6	4/21/2005	41.30151233	-122.30664558
OM-7	4/21/2005	41.30151634	-122.30682575
OM-8	4/21/2005	41.30148870	-122.30693060
OM-9	4/21/2005	41.30140593	-122.30673150
OM-10	4/21/2005	41.30139714	-122.30692037
OM-11	4/21/2005	41.30119818	-122.30755773
OM-12	4/21/2005	41.30112571	-122.30770737
E&E 1998 TSI			
OMDT-1	May-98	41.301590	-122.306610
OMDT-2	May-98	41.301666	-122.306671
OMDT-5	May-98	41.301487	-122.306709
OMDT-10	May-98	41.301456	-122.306915
OMTP-1	May-98	41.301571	-122.306946
OMTP-2	May-98	41.301655	-122.306816
OMWA-1	May-98	41.301182	-122.307632
OMLP-1	May-98	41.301987	-122.307724
OMLP-2	May-98	41.301796	-122.308098
OMLP-5	May-98	41.301643	-122.307625
OMRB-1	May-98	41.301010	-122.308281
OMRB-1	May-98	41.300949	-122.308357
OMRB-1	May-98	41.300880	-122.308205
OMRB-1	May-98	41.300964	-122.308113
OMRB-1	May-98	41.300961	-122.30822
OMFB-1	May-98	41.301052	-122.307785

Notes:

^{*} Latitude and longitude is an estimate based on consultants placement of location on associated figure and Google Earth

THE LANDING - OLD MILL SECTION MT SHASTA, CALIFORNIA

Site Work		Unit	Unit Cost	Estimated Cost
Stormwater BMPs	1	Lump Sum	\$6,000	\$6,000
Clearing, Grubbing, and Light Road Improvements	1	Lump Sum	\$16,000	\$16,000
Excavation and Stockpiling of 8,000 cy of Impacted Soil	1	Lump Sum	\$35,000	\$35,000
Offsite Transport and Disposal, Class II Designated Material	11,063	Tons	\$127	\$1,405,001
Offsite Transport and Disposal, Class I Hazardous Material	75	Tons	\$298	\$22,350
Confirmation Sampling	150	Each	\$125	\$18,750
Loading of Stockpiled Soil for Disposal	1	Lump Sum	\$15,000	\$15,000
Import and Placement of Clean Fill	8,000	Cubic Yard	\$35	\$280,000
Subtotal of Direct Costs		•		\$1,798,101
Management and Engineering (Sampling and Analysis Plan, Transportation Plan, etc.)	1	Lump Sum	\$20,000	\$20,000
Site Control and Monitoring	1	Lump Sum	\$10,000	\$10,000
Removal Action Completion Report	1	Lump Sum	\$10,000	\$10,000
Subtotal of Indirect Costs		ļ.		\$40,000
Contingency		% Direct Costs	10%	\$179,810
Total Estimated Capitol Cost				\$2,017,911
	Quantity	Unit	Unit Cost	Estimated Cost
5-year reviews and O&M	0	Lump Sum	\$5,000	\$0
Cost for DTSC Oversight	0	Lump Sum	\$3,500	\$0
Estimated 30-Year O&M Cost				\$0

REMEDIATION COST ESTIMATE SUMMARY – ALTERNATIVE NO. 3 $\,$

EXCAVATION AND OFFSITE DISPOSAL OF IMPACTED SOIL FOR COMMERCIAL/INDUSTRIAL LAND USE

THE LANDING - OLD MILL SECTION

MT SHASTA, CALIFORNIA

Site Work		Unit	Unit Cost	Estimated Cost
Stormwater BMPs	1	Lump Sum	\$2,000	\$2,000
Clearing, Grubbing, and Light Road Improvements	1	Lump Sum	\$8,000	\$8,000
Excavation and Stockpiling of 320 cy of Impacted Soil	1	Lump Sum	\$10,000	\$10,000
Offsite Transport and Disposal, Class II Designated Material	446	Tons	\$127	\$56,642
Offsite Transport and Disposal, Class I Hazardous Material	75	Tons	\$298	\$22,350
Loading of Stockpiled Soil for Disposal	1	Lump Sum	\$5,000	\$5,000
Confirmation Sampling	30	Each	\$125	\$3,750
Import and Placement of Clean Fill	375	Cubic Yard	\$35	\$13,125
Subtotal of Direct Costs				\$120,867
Management and Engineering (Sampling and Analysis Plan, Transportation Plan, etc.)	1	Lump Sum	\$20,000	\$20,000
Site Control and Monitoring	1	Lump Sum	\$5,000	\$5,000
Removal Action Completion Report	1	Lump Sum	\$10,000	\$10,000
Subtotal of Indirect Costs		<u> </u>		\$35,000
Contingency		% Direct Costs	10%	\$12,087
Total Estimated Capitol Cost		•		\$167,954
	Quantity	Unit	Unit Cost	Estimated Cost
5-year reviews and O&M	0	Lump Sum	\$5,000	\$0
Cost for DTSC Oversight	0	Lump Sum	\$3,500	\$0
Estimated 30-Year O&M Cost		•	•	\$0

REMEDIATION COST ESTIMATE SUMMARY – ALTERNATIVE NO. $4\,$

EXCAVATION AND OFFSITE DISPOSAL OF PCP & PETROLEUM HYDROCARBON IMPACTED SOIL AND CAPPING OF DIOXIN AND REMAINING PETROLEUM HYDROCARBON IMPACTED SOIL

THE LANDING - OLD MILL SECTION MT SHASTA, CALIFORNIA

MI SF	iasta, calif	JKNIA		
Site Work		Unit	Unit Cost	Estimated Cost
Stormwater BMPs	1	Lump Sum	\$2,000	\$2,000
Clearing, Grubbing, and Light Road Improvements	1	Lump Sum	\$8,000	\$8,000
Excavation and Stockpiling of 320 cy of Impacted Soil	1	Lump Sum	\$10,000	\$10,000
On Site Transport and Placement	1	Lump Sum	\$5,000	\$5,000
Confirmation Sampling	20	Each	\$125	\$2,500
Import and Placement of Clean Fill (1 ft cap)	150	Cubic Yard	\$35	\$5,250
Subtotal of Direct Costs				\$32,750
Management and Engineering (Sampling and Analysis Plan, Transportation Plan, etc.)	1	Lump Sum	\$20,000	\$20,000
Site Control and Monitoring	1	Lump Sum	\$5,000	\$5,000
Removal Action Completion Report	1	Lump Sum	\$10,000	\$10,000
Subtotal of Indirect Costs	1			\$35,000
Contingency		% Direct Costs	10%	\$3,275
Total Estimated Capitol Cost				\$71,025
				•
	Quantity	Unit	Unit Cost	Estimated Cost
5-year reviews and O&M	6	Lump Sum	\$5,000	\$30,000
Cost for DTSC Oversight	6	Lump Sum	\$3,500	\$21,000
Estimated 30-Year O&M Cost	•	•	1	\$51,000

APPENDIX A

ELAP No.: 1838

CSDLAC No.: 10196 ORELAP No.: CA300003

January 29, 2018

Nicole Hastings-Bethel Geocon Consultants, Inc. 3160 Gold Valley Drive, Suite 800 Rancho Cordova, CA 95742

Tel: (916) 852-9118 Fax:(916) 852-9132

Re: ATL Work Order Number: 1800302

Client Reference: The Landing-Oil Mill, S9850-03-13B, S9850-03-13B

Enclosed are the results for sample(s) received on January 20, 2018 by Advanced Technology Laboratories. The sample(s) are tested for the parameters as indicated on the enclosed chain of custody in accordance with applicable laboratory certifications. The laboratory results contained in this report specifically pertains to the sample(s) submitted.

Thank you for the opportunity to serve the needs of your company. If you have any questions, please feel free to contact me or your Project Manager.

Sincerely,

Eddie Rodriguez

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and its absence renders the report invalid. Test results contained within this data package meet the requirements of applicable state-specific certification programs. The report cannot be reproduced without written permission from the client and Advanced Technology Laboratories.

Geocon Consultants, Inc. Project Number: The Landing-Oil Mill, S9850-03-13B, S98

3160 Gold Valley Drive, Suite 800 Report To: Nicole Hastings-Bethel

Rancho Cordova , CA 95742 Reported: 01/29/2018

SUMMARY OF SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
OM-2	1800302-01	Groundwater	1/18/18 11:50	1/20/18 9:39
OM-4	1800302-02	Groundwater	1/18/18 12:20	1/20/18 9:39
OM-3	1800302-03	Groundwater	1/18/18 12:35	1/20/18 9:39
OM-1	1800302-04	Groundwater	1/18/18 12:55	1/20/18 9:39
OM-5	1800302-05	Groundwater	1/18/18 13:15	1/20/18 9:39

Geocon Consultants, Inc. Project Number: The Landing-Oil Mill, S9850-03-13B, S98

3160 Gold Valley Drive, Suite 800 Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742 Reported: 01/29/2018

Client Sample ID OM-2 Lab ID: 1800302-01

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	0.014	0.010	1	B8A0636	01/24/2018	01/25/18 09:27	
Arsenic	0.014	0.010	1	B8A0636	01/24/2018	01/25/18 09:27	
Barium	0.18	0.0030	1	B8A0636	01/24/2018	01/25/18 09:27	
Beryllium	0.010	0.0030	1	B8A0636	01/24/2018	01/25/18 09:27	
Cadmium	0.014	0.0030	1	B8A0636	01/24/2018	01/25/18 09:27	
Chromium	0.020	0.0030	1	B8A0636	01/24/2018	01/25/18 09:27	
Cobalt	0.018	0.0030	1	B8A0636	01/24/2018	01/25/18 09:27	
Copper	0.013	0.0090	1	B8A0636	01/24/2018	01/25/18 09:27	
Lead	0.024	0.0050	1	B8A0636	01/24/2018	01/25/18 09:27	
Molybdenum	0.016	0.0050	1	B8A0636	01/24/2018	01/25/18 09:27	
Nickel	0.018	0.0050	1	B8A0636	01/24/2018	01/25/18 09:27	
Selenium	ND	0.010	1	B8A0636	01/24/2018	01/25/18 09:27	
Silver	0.0089	0.0030	1	B8A0636	01/24/2018	01/25/18 09:27	
Thallium	0.020	0.015	1	B8A0636	01/24/2018	01/25/18 09:27	
Vanadium	0.019	0.0030	1	B8A0636	01/24/2018	01/25/18 09:27	
Zinc	ND	0.025	1	B8A0636	01/24/2018	01/25/18 09:27	

Mercury by AA (Cold Vapor) EPA 7470A

Analyst: KEK

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	ND	0.20	1	B8A0639	01/24/2018	01/24/18 15:06	

Diesel Range Organics by EPA 8015B

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	ND	0.05	1	B8A0658	01/24/2018	01/25/18 00:12	
ORO	ND	0.05	1	B8A0658	01/24/2018	01/25/18 00:12	
Surrogate: p-Terphenyl	68.6 %	20 - 150		B8A0658	01/24/2018	01/25/18 00:12	

Geocon Consultants, Inc. Project Number: The Landing-Oil Mill, S9850-03-13B, S98

3160 Gold Valley Drive, Suite 800 Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742 Reported: 01/29/2018

Client Sample ID OM-4 Lab ID: 1800302-02

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	0.010	1	B8A0636	01/24/2018	01/25/18 09:28	
Arsenic	ND	0.010	1	B8A0636	01/24/2018	01/25/18 09:28	
Barium	0.11	0.0030	1	B8A0636	01/24/2018	01/25/18 09:28	
Beryllium	ND	0.0030	1	B8A0636	01/24/2018	01/25/18 09:28	
Cadmium	ND	0.0030	1	B8A0636	01/24/2018	01/25/18 09:28	
Chromium	ND	0.0030	1	B8A0636	01/24/2018	01/25/18 09:28	
Cobalt	0.0034	0.0030	1	B8A0636	01/24/2018	01/25/18 09:28	
Copper	ND	0.0090	1	B8A0636	01/24/2018	01/25/18 09:28	
Lead	0.015	0.0050	1	B8A0636	01/24/2018	01/25/18 09:28	
Molybdenum	ND	0.0050	1	B8A0636	01/24/2018	01/25/18 09:28	
Nickel	ND	0.0050	1	B8A0636	01/24/2018	01/25/18 09:28	
Selenium	ND	0.010	1	B8A0636	01/24/2018	01/25/18 09:28	
Silver	ND	0.0030	1	B8A0636	01/24/2018	01/25/18 09:28	
Thallium	ND	0.015	1	B8A0636	01/24/2018	01/25/18 09:28	
Vanadium	0.012	0.0030	1	B8A0636	01/24/2018	01/25/18 09:28	
Zinc	ND	0.025	1	B8A0636	01/24/2018	01/25/18 09:28	

Mercury by AA (Cold Vapor) EPA 7470A

Analyst: KEK

	Result	PQL				Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.20	1	B840639	01/24/2018	01/24/18 15:07	

Diesel Range Organics by EPA 8015B

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	0.07	0.05	1	B8A0658	01/24/2018	01/25/18 00:29	
ORO	0.08	0.05	1	B8A0658	01/24/2018	01/25/18 00:29	
Surrogate: p-Terphenyl	112 %	20 - 150		B8A0658	01/24/2018	01/25/18 00:29	_

Geocon Consultants, Inc. Project Number: The Landing-Oil Mill, S9850-03-13B, S98

3160 Gold Valley Drive, Suite 800 Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742 Reported: 01/29/2018

Client Sample ID OM-3 Lab ID: 1800302-03

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	0.010	1	B8A0636	01/24/2018	01/25/18 09:29	
Arsenic	ND	0.010	1	B8A0636	01/24/2018	01/25/18 09:29	
Barium	0.36	0.0030	1	B8A0636	01/24/2018	01/25/18 09:29	
Beryllium	ND	0.0030	1	B8A0636	01/24/2018	01/25/18 09:29	
Cadmium	ND	0.0030	1	B8A0636	01/24/2018	01/25/18 09:29	
Chromium	0.0059	0.0030	1	B8A0636	01/24/2018	01/25/18 09:29	
Cobalt	0.0059	0.0030	1	B8A0636	01/24/2018	01/25/18 09:29	
Copper	0.019	0.0090	1	B8A0636	01/24/2018	01/25/18 09:29	
Lead	0.020	0.0050	1	B8A0636	01/24/2018	01/25/18 09:29	
Molybdenum	ND	0.0050	1	B8A0636	01/24/2018	01/25/18 09:29	
Nickel	0.0066	0.0050	1	B8A0636	01/24/2018	01/25/18 09:29	
Selenium	ND	0.010	1	B8A0636	01/24/2018	01/25/18 09:29	
Silver	ND	0.0030	1	B8A0636	01/24/2018	01/25/18 09:29	
Thallium	ND	0.015	1	B8A0636	01/24/2018	01/25/18 09:29	
Vanadium	0.033	0.0030	1	B8A0636	01/24/2018	01/25/18 09:29	
Zinc	0.13	0.025	1	B8A0636	01/24/2018	01/25/18 09:29	

Mercury by AA (Cold Vapor) EPA 7470A

Analyst: KEK

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	ND	0.20	1	B8A0639	01/24/2018	01/24/18 15:13	

Diesel Range Organics by EPA 8015B

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	ND	0.05	1	B8A0658	01/24/2018	01/25/18 00:46	
ORO	ND	0.05	1	B8A0658	01/24/2018	01/25/18 00:46	
Surrogate: p-Terphenyl	96.2 %	20 - 150		B8A0658	01/24/2018	01/25/18 00:46	

Geocon Consultants, Inc. Project Number: The Landing-Oil Mill, S9850-03-13B, S98

3160 Gold Valley Drive, Suite 800 Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742 Reported: 01/29/2018

Client Sample ID OM-1 Lab ID: 1800302-04

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	0.010	1	B8A0636	01/24/2018	01/25/18 09:30	
Arsenic	ND	0.010	1	B8A0636	01/24/2018	01/25/18 09:30	
Barium	0.85	0.0030	1	B8A0636	01/24/2018	01/25/18 09:30	
Beryllium	ND	0.0030	1	B8A0636	01/24/2018	01/25/18 09:30	
Cadmium	ND	0.0030	1	B8A0636	01/24/2018	01/25/18 09:30	
Chromium	0.0079	0.0030	1	B8A0636	01/24/2018	01/25/18 09:30	
Cobalt	0.016	0.0030	1	B8A0636	01/24/2018	01/25/18 09:30	
Copper	0.049	0.0090	1	B8A0636	01/24/2018	01/25/18 09:30	
Lead	0.034	0.0050	1	B8A0636	01/24/2018	01/25/18 09:30	
Molybdenum	ND	0.0050	1	B8A0636	01/24/2018	01/25/18 09:30	
Nickel	0.0082	0.0050	1	B8A0636	01/24/2018	01/25/18 09:30	
Selenium	ND	0.010	1	B8A0636	01/24/2018	01/25/18 09:30	
Silver	ND	0.0030	1	B8A0636	01/24/2018	01/25/18 09:30	
Thallium	ND	0.015	1	B8A0636	01/24/2018	01/25/18 09:30	
Vanadium	0.039	0.0030	1	B8A0636	01/24/2018	01/25/18 09:30	
Zinc	ND	0.025	1	B8A0636	01/24/2018	01/25/18 09:30	

Mercury by AA (Cold Vapor) EPA 7470A

Analyst: KEK

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	ND	0.20	1	B8A0639	01/24/2018	01/24/18 15:15	

Diesel Range Organics by EPA 8015B

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	ND	0.05	1	B8A0658	01/24/2018	01/25/18 01:04	
ORO	ND	0.05	1	B8A0658	01/24/2018	01/25/18 01:04	
Surrogate: p-Terphenyl	100 %	20 - 150		B8A0658	01/24/2018	01/25/18 01:04	_

Geocon Consultants, Inc. Project Number: The Landing-Oil Mill, S9850-03-13B, S98

3160 Gold Valley Drive, Suite 800 Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742 Reported: 01/29/2018

Client Sample ID OM-5 Lab ID: 1800302-05

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	0.010	1	B8A0636	01/24/2018	01/25/18 09:34	
Arsenic	ND	0.010	1	B8A0636	01/24/2018	01/25/18 09:34	
Barium	0.69	0.0030	1	B8A0636	01/24/2018	01/25/18 09:34	
Beryllium	ND	0.0030	1	B8A0636	01/24/2018	01/25/18 09:34	
Cadmium	ND	0.0030	1	B8A0636	01/24/2018	01/25/18 09:34	
Chromium	0.012	0.0030	1	B8A0636	01/24/2018	01/25/18 09:34	
Cobalt	0.014	0.0030	1	B8A0636	01/24/2018	01/25/18 09:34	
Copper	0.068	0.0090	1	B8A0636	01/24/2018	01/25/18 09:34	
Lead	0.025	0.0050	1	B8A0636	01/24/2018	01/25/18 09:34	
Molybdenum	ND	0.0050	1	B8A0636	01/24/2018	01/25/18 09:34	
Nickel	0.013	0.0050	1	B8A0636	01/24/2018	01/25/18 09:34	
Selenium	ND	0.010	1	B8A0636	01/24/2018	01/25/18 09:34	
Silver	ND	0.0030	1	B8A0636	01/24/2018	01/25/18 09:34	
Thallium	ND	0.015	1	B8A0636	01/24/2018	01/25/18 09:34	
Vanadium	0.064	0.0030	1	B8A0636	01/24/2018	01/25/18 09:34	
Zinc	0.093	0.025	1	B8A0636	01/24/2018	01/25/18 09:34	

Mercury by AA (Cold Vapor) EPA 7470A

Analyst: KEK

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	ND	0.20	1	B8A0639	01/24/2018	01/24/18 15:17	

Diesel Range Organics by EPA 8015B

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	ND	0.05	1	B8A0658	01/24/2018	01/25/18 01:21	
ORO	ND	0.05	1	B8A0658	01/24/2018	01/25/18 01:21	
Surrogate: p-Terphenyl	97.3 %	20 - 150		B8A0658	01/24/2018	01/25/18 01:21	

Geocon Consultants, Inc.

Project Number: The Landing-Oil Mill, S9850-03-13B, S98

MDL

3160 Gold Valley Drive, Suite 800 Report To: Nicole Hastings-Bethel

Rancho Cordova , CA 95742 Reported: 01/29/2018

PQL

Result

QUALITY CONTROL SECTION

Title 22 Metals by ICP-AES EPA 6010B - Quality Control

Spike

Source

% Rec

RPD

Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8A0636 - EPA 3010A_	W									
Blank (B8A0636-BLK1)					Prepared	d: 1/24/2018 A	Analyzed: 1/25/	2018		
Antimony	ND	0.010	0.0088							
Arsenic	ND	0.010	0.0078							
Barium	ND	0.0030	0.0026							
Beryllium	ND	0.0030	0.0016							
Cadmium	ND	0.0030	0.0024							
Chromium	ND	0.0030	0.0020							
Cobalt	ND	0.0030	0.0016							
Copper	ND	0.0090	0.0038							
ead	ND	0.0050	0.0047							
Molybdenum	ND	0.0050	0.0030							
lickel	ND	0.0050	0.0046							
Selenium	ND	0.010	0.0093							
ilver	ND	0.0030	0.0024							
hallium	ND	0.015	0.0085							
anadium	ND	0.0030	0.0022							
inc	ND	0.025	0.0057							
LCS (B8A0636-BS1)					Prepared	d: 1/24/2018 A	Analyzed: 1/25/	2018		
antimony	0.954012	0.010	0.0088	1.00000		95.4	80 - 120			
rsenic	0.926054	0.010	0.0078	1.00000		92.6	80 - 120			
arium	0.969026	0.0030	0.0026	1.00000		96.9	80 - 120			
eryllium	0.948156	0.0030	0.0016	1.00000		94.8	80 - 120			
'admium	0.917760	0.0030	0.0024	1.00000		91.8	80 - 120			
hromium	0.950164	0.0030	0.0020	1.00000		95.0	80 - 120			
obalt	0.962684	0.0030	0.0016	1.00000		96.3	80 - 120			
Copper	0.984322	0.0090	0.0038	1.00000		98.4	80 - 120			
ead	1.06477	0.0050	0.0047	1.00000		106	80 - 120			
Molybdenum	0.934826	0.0050	0.0030	1.00000		93.5	80 - 120			
lickel	0.943812	0.0050	0.0046	1.00000		94.4	80 - 120			
elenium	0.912139	0.010	0.0093	1.00000		91.2	80 - 120			
ilver	0.942465	0.0030	0.0024	1.00000		94.2	80 - 120			
'hallium	0.970325	0.015	0.0085	1.00000		97.0	80 - 120			
/anadium	0.961358	0.0030	0.0022	1.00000		96.1	80 - 120			
inc	0.913070	0.025	0.0057	1.00000		91.3	80 - 120			
Duplicate (B8A0636-DUP1)		s	ource: 18002	274-04	Prepared	d: 1/24/2018 A	Analyzed: 1/25/	2018		
ntimony	ND	0.010	0.0088		ND			NR	20	
rsenic	ND	0.010	0.0078		9.9032E-3			NR	20	
Barium	ND	0.0030	0.0026		0.009756			NR	20	
Beryllium	ND	0.0030	0.0026		0.004820			NR	20	

Geocon Consultants, Inc. Project Number: The Landing-Oil Mill, S9850-03-13B, S98

3160 Gold Valley Drive, Suite 800 Report To: Nicole Hastings-Bethel

Rancho Cordova , CA 95742 Reported: 01/29/2018

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
D / I D0 / 0 / 2 / ED / 2010 /	13 777 (* 1)									
Batch B8A0636 - EPA 3010A	_W (continued)									
Duplicate (B8A0636-DUP1) - Co	ontinued	Se	ource: 18002	274-04	Prepared	: 1/24/2018	Analyzed: 1/25/	2018		
Cadmium	ND	0.0030	0.0024		0.007069			NR	20	
Chromium	ND	0.0030	0.0020		0.009860			NR	20	
Cobalt	ND	0.0030	0.0016		0.007970			NR	20	
Copper	ND	0.0090	0.0038		5.0995E-3			NR	20	
Lead	0.077670	0.0050	0.0047		0.203569			89.5	20	R
Molybdenum	ND	0.0050	0.0030		0.007814			NR	20	
Nickel	ND	0.0050	0.0046		0.009347			NR	20	
Selenium	ND	0.010	0.0093		ND			NR	20	
Silver	ND	0.0030	0.0024		0.004757			NR	20	
Гhallium	ND	0.015	0.0085		0.010837			NR	20	
Vanadium	ND	0.0030	0.0022		5.5015E-3			NR	20	
Zinc	ND	0.025	0.0057		0.018776			NR	20	
Matrix Spike (B8A0636-MS1)		Se	ource: 18002	274-04	Prepared	: 1/24/2018	Analyzed: 1/25/	2018		
Antimony	2.27970	0.010	0.0088	2.50000	ND	91.2	60 - 130			
Arsenic	2.24576	0.010	0.0078	2.50000	9.9032E-3	89.4	69 - 123			
Barium	2.34921	0.0030	0.0026	2.50000	0.009756	93.6	67 - 129			
Beryllium	2.41070	0.0030	0.0016	2.50000	0.004820	96.2	74 - 120			
Cadmium	2.23477	0.0030	0.0024	2.50000	0.007069	89.1	69 - 116			
Chromium	2.31460	0.0030	0.0020	2.50000	0.009860	92.2	74 - 120			
Cobalt	2.32019	0.0030	0.0016	2.50000	0.007970	92.5	70 - 116			
Copper	2.33274	0.0090	0.0038	2.50000	5.0995E-3	93.1	76 - 123			
Lead	2.27584	0.0050	0.0047	2.50000	0.203569	82.9	69 - 117			
Molybdenum	2.32246	0.0050	0.0030	2.50000	0.007814	92.6	68 - 120			
Nickel	2.27974	0.0050	0.0046	2.50000	0.009347	90.8	70 - 115			
Selenium	2.21817	0.010	0.0093	2.50000	ND	88.7	66 - 120			
Silver	2.52150	0.0030	0.0024	2.50000	0.004757	101	73 - 123			
Гhallium	2.34200	0.015	0.0085	2.50000	0.010837	93.2	57 - 124			
Vanadium	2.33411	0.0030	0.0022	2.50000	5.5015E-3	93.1	72 - 123			
Zinc	2.19631	0.025	0.0057	2.50000	0.018776	87.1	73 - 111			
Matrix Spike Dup (B8A0636-M	SD1)	Se	ource: 18002	274-04	Prepared	: 1/24/2018	Analyzed: 1/25/	2018		
Antimony	2.35344	0.010	0.0088	2.50000	ND	94.1	60 - 130	3.18	20	
Arsenic	2.32436	0.010	0.0078	2.50000	9.9032E-3	92.6	69 - 123	3.44	20	
Barium	2.53371	0.0030	0.0026	2.50000	0.009756	101	67 - 129	7.56	20	
Beryllium	2.46877	0.0030	0.0016	2.50000	0.004820	98.6	74 - 120	2.38	20	
Cadmium	2.41205	0.0030	0.0024	2.50000	0.007069	96.2	69 - 116	7.63	20	
Chromium	2.50314	0.0030	0.0024	2.50000	0.007860	99.7	74 - 120	7.83	20	
Cobalt	2.49503	0.0030	0.0026	2.50000	0.007970	99.5	70 - 116	7.26	20	
Copper	2.59702	0.0090	0.0038	2.50000	5.0995E-3	104	76 - 123	10.7	20	
Lead	2.34363	0.0050	0.0036	2.50000	0.203569	85.6	69 - 117	2.93	20	
Molybdenum	2.51246	0.0050	0.0030	2.50000	0.007814	100	68 - 120	7.86	20	

Geocon Consultants, Inc.

Project Number: The Landing-Oil Mill, S9850-03-13B, S98

3160 Gold Valley Drive, Suite 800 Report To: Nicole Hastings-Bethel

Rancho Cordova , CA 95742 Reported: 01/29/2018

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B8A0636 - EPA 3010A_W (continued)

Matrix Spike Dup (B8A0636-MS	SD1) - Continued	S	ource: 18002	274-04	Prepared:	1/24/2018	Analyzed: 1/25/2	2018	
Nickel	2.45931	0.0050	0.0046	2.50000	0.009347	98.0	70 - 115	7.58	20
Selenium	2.28563	0.010	0.0093	2.50000	ND	91.4	66 - 120	3.00	20
Silver	2.76697	0.0030	0.0024	2.50000	0.004757	110	73 - 123	9.28	20
Thallium	2.43239	0.015	0.0085	2.50000	0.010837	96.9	57 - 124	3.79	20
Vanadium	2.52253	0.0030	0.0022	2.50000	5.5015E-3	101	72 - 123	7.76	20
Zinc	2.36385	0.025	0.0057	2.50000	0.018776	93.8	73 - 111	7.35	20

Geocon Consultants, Inc. Project Number: The Landing-Oil Mill, S9850-03-13B, S98

3160 Gold Valley Drive, Suite 800 Report To: Nicole Hastings-Bethel

Rancho Cordova , CA 95742 Reported: 01/29/2018

Mercury by AA (Cold Vapor) EPA 7470A - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8A0639 - EPA 245.1/7470)_W									
Blank (B8A0639-BLK1)					Prepared:	1/24/2018	Analyzed: 1/24/	2018		
Mercury	ND	0.20	0.05							
LCS (B8A0639-BS1)					Prepared:	1/24/2018	Analyzed: 1/24/	2018		
Mercury	9.82754	0.20	0.05	10.0000		98.3	80 - 120			
Duplicate (B8A0639-DUP1)		Se	ource: 18002	298-27	Prepared:	1/24/2018	Analyzed: 1/24/	2018		
Mercury	ND	0.20	0.05		ND			NR	20	
Matrix Spike (B8A0639-MS1)		Se	ource: 18002	298-27	Prepared:	1/24/2018	Analyzed: 1/24/	2018		
Mercury	9.60124	0.20	0.05	10.0000	ND	96.0	70 - 130			
Matrix Spike Dup (B8A0639-MSD1)	Se	ource: 18002	298-27	Prepared:	1/24/2018	Analyzed: 1/24/	2018		
Mercury	9.71659	0.20	0.05	10.0000	ND	97.2	70 - 130	1.19	20	
Post Spike (B8A0639-PS1)		Se	ource: 18002	298-27	Prepared:	1/24/2018	Analyzed: 1/24/	2018		
Mercury										

Geocon Consultants, Inc. Project Number: The Landing-Oil Mill, S9850-03-13B, S98

3160 Gold Valley Drive, Suite 800 Report To: Nicole Hastings-Bethel

Rancho Cordova , CA 95742 Reported: 01/29/2018

Diesel Range Organics by EPA 8015B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Datah D9A0659 CCSEMI I	DDO W									
Batch B8A0658 - GCSEMI_I	OKO_W									
Blank (B8A0658-BLK1)					Prepare	d: 1/24/2018	Analyzed: 1/24	2018		
DRO	ND	0.05	0.05							
ORO	ND	0.05	0.05							
Surrogate: p-Terphenyl	0.07987			8.00000E-2		99.8	20 - 150			
LCS (B8A0658-BS1)					Prepare	d: 1/24/2018	Analyzed: 1/24/	2018		
DRO	1.07020	0.05	0.05	1.00000		107	42 - 142			
Surrogate: p-Terphenyl	0.08300			8.00000E-2		104	20 - 150			
Matrix Spike (B8A0658-MS1)		S	ource: 18003	318-01	Prepare	d: 1/24/2018	Analyzed: 1/24/	2018		
DRO	0.908540	0.05	0.05	1.00000	ND	90.9	42 - 142			
Surrogate: p-Terphenyl	0.07439			8.00000E-2		93.0	20 - 150			
Matrix Spike Dup (B8A0658-M	SD1)	S	ource: 18003	318-01	Prepare	d: 1/24/2018	Analyzed: 1/24	2018		
DRO	0.990040	0.05	0.05	1.00000	ND	99.0	42 - 142	8.59	20	
Surrogate: p-Terphenyl	0.09150			8.00000E-2		114	20 - 150			

Geocon Consultants, Inc. Project Number: The Landing-Oil Mill, S9850-03-13B, S98

3160 Gold Valley Drive, Suite 800 Report To: Nicole Hastings-Bethel

Rancho Cordova, CA 95742 Reported: 01/29/2018

Notes and Definitions

R RPD value outside acceptance criteria. Calculation is based on raw values.

ND Analyte is not detected at or above the Practical Quantitation Limit (PQL). When client requests quantitation against MDL,

analyte is not detected at or above the Method Detection Limit (MDL)

PQL Practical Quantitation Limit

MDL Method Detection Limit

NR Not Reported

RPD Relative Percent Difference

CA2 CA-ELAP (CDPH)

OR1 OR-NELAP (OSPHL)

Notes:

(1) The reported MDL and PQL are based on prep ratio variation and analytical dilution.

(2) The suffix [2C] of specific analytes signifies that the reported result is taken from the instrument's second column.

(3) Results are wet unless otherwise specified.

ADVANCED AN TECHNOLOGY

		For Laboratory Use Only	July		ATLCOC Ver: 20130715	715
		Samp	le Con	ditio	Sample Conditions Upon Receipt	
Method	Method of Iransport	Condition	Ϋ́	٦	Condition	z,
□ Client	□ AŢŁ	1. CHILLED	Ģ		6 🗅 5. # OF SAMPLES MATCH COC 🐔	
□ FedEx	OnTrac	2. HEADSPACE (VOA)			□ □ 6. PRESERVED ☑	[2]
0.820		3. CONTAINER INTACT	Þ		Z 🗆 7, COOLER TEMP, deg C: 🕽 😥	
□ Other:		4. SEALED		Ø		

same as SEND RÉPORT TO

Fax: 916-P **CHAIN OF CUSTODY RECORD** Instruction: Complete all shaded areas. CITY: KOMCIND Address: 3160Geocon Consultant Inc 3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040 LABORATORIES Company:

ЕВ	7	100000000000000000000000000000000000000		SEND REPORT TO:	Emsili		The Control of the Co	VIII	SEND INVOICE TO	CE IO: Fmail		☐ same as SEIND KEPOKI TO	D KEYO	5	17
M C			Nicele Hoss	十、 ナ	ting Or	יבנים יות ה	(CO)			i					
DIS	اق ک	Company:						Company:							
nэ	Add	Address:						<u>Address:</u>							EEVIT -
	i X City	2			State:	Zip:		City:			State:	Zip:			g programa
	Pro	Project Name:	Jame:	Quote No:	Special Instructions/	ins/Comments:	ints:	Encircle or Write Requested Analysis	sted Analysis	Encircle Sa	Encircle Sample Matrix	Container		QA/QC	_
	Pro	Project No.:	e Landing · Old	Old Mill				(sapiousa				ani9=4 (n	93; 3=H2SO4; 4 :		
	San	Sampler	<u> 1</u>	المارية الماري				(Volatilis) Olatiles) Chlorine P Chlorine P A SS A STATE A SS A STA		NT / SLUDG / FILTER (ING (GRO	atzaw \ M IO - daaay	AON; 3=Lite	odzel9=5 (sei	□ RWQCB	
	_ M	-	7.5052		Sample Description			5(GRO) (ORD) (Semi-v (Organo (Organo (Organo		DS \ MIBE	яотг - яз		erial: 1=Gla ervative:	IARKS	
E S	3TI	711	Lab No.	Sample ID / Location	L	Date	Time	108 108 108 108 108		nos	TAW		Mate		
ИbГ	Н	 `	10- 208 0081	Z-W0		<u> </u>	1150			X		5 148	7.72		orgran •
ΑS	2		10.	1.40		, , ,	1220						c de la constant		
ECT	m		٤٥٠				1235						E ty		100 at 100
lОЯ	4		ho.]-W'0			266								
d	2		701	6.M.S		-,7	1315					3	3		
	9	1.7				or in				a de					
	7	_												51	7777
	∞	~~												12	
	6					4	5,151 6,455 3,555								
	8	0										6		163	9395J
S V	3.2.2.3	Sample rec Samples St. The follows: TAT: TAT: TAT:	behing hours: 7:30 AM to 7:30 bm, and ing turnaround time condition ing turnaround time condition ing turnaround time condition in turnaround time condition in turnaround time condition in turnaround such and in turnari	1. Sample receiving hours: 7:30 AM to 7:30 PM Monday - Friday, Saturday 8:00 AM to 12:00 PM. 2. Sample submitted AFTR 3:00 PM, are considered received the following Business day at 8:00 AM. 3. The following furnational that excentitions apply aff received by 9:00 AM. TAT 6: 100% Surchage SAME BUSINESS OAY if received by 9:00 AM. TAT 7: 100% Surchage SAME BUSINESS DAY (COB 5:00 PM) TAT 3: 150% Surchage AND BUSINESS DAY (COB 5:00 PM) TAT 4: 3:00% Surchage AND BUSINESS DAY (COB 5:00 PM) TAT 4: 3:00% Surchage AND BUSINESS DAY (COB 5:00 PM)	samples will be disposed of after 14 calendar days after receipt of samples. 7. Electronic records maintained for five (5) years from report date. 8. Hard copy reports will be disposed of after 45 calendar days from report date. 9. Storage and Report Fees: - Liquid & solid samples: Complimentary storage for forty-five (45) calendar days extended storage or hold is requested. - Ar samples. Complimentary storage for ten (10) calendar days from receipt c.	of after 14 calendar ined for five (5) yes disposed of after 45 complimentary stora is requested.	days after receipt is ars from report date 5 calendar days fron age for forty-five (4 (10) calendar days	samples will be disposed of affer 14 calendar days after receipt of samples. Headronic records maintained for five (5) years from report date. Head copy records will be disposed of after 45 calendar days from report date. Storage and Report Eees. - Liquid & soid samples: Complimentary storage for forty-five (45) calendar days from receipt of samples; \$2/sample/month if extended storage or hold is requested. - Air samples: Complimentary storage for ten (10) calendar days from receipt of samples, \$20/ sample/week if extended storage is		orized agent boratory ser antee paym	As the authorized agent of the company above, I hereby purchase laboratory services from ATL as shown above and hereby guarantee payment as quoted.	pany abov VTL as shored	e, I here wn abov	eby e and	May, your and the

Submitter Print Name N. Hestings

requested.
Hard copy and regenerated reports/EDDs: \$17.50 per hard copy report requested; \$50.00 per regenerated/reforma? ed report; \$35 per expressed EDD to the TCLP/STLC samples: add 2 days to analysis TAT for extraction on procedure.
11. Unanalyzed samples will incur a disposal fee of \$7 per sample.

Date:

Received by: (Signature and Printed Name)
Received by: (Signature and Printed Name)

Received by: (Signature and Printed Name

Time:

Date:

Time; 600 Time: 09.35

Date: Date:

Page 14 of 14

ask for quote. osed of after 45 calendar days from receipt of samples; air Projects requiring shorter TATs will incur a surcharge

linguished by (Signature and Printed Name)

PROJECT SAMPLES

February 02, 2018

Vista Work Order No. 1800154

Ms. Nicole Hastings-Bethel Geocon Consultants, Inc. 3160 Gold Valley Drive, Suite 800 Rancho Cordova, CA 95742

Dear Ms. Hastings-Bethel,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on January 19, 2018. This sample set was analyzed on a standard turn-around time, under your Project Name '59850-03-13B'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph; 916-673-1520 fx; 916-673-0106 www.vista-analytical.com

Work Order 1800154 Page 1 of 16

Vista Work Order No. 1800154 Case Narrative

Sample Condition on Receipt:

Five groundwater samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 8290

These samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 8290 using a ZB-5MS GC column.

Holding Times

The method holding time criteria were met for these samples.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

Work Order 1800154 Page 2 of 16

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	13
Certifications	14
Sample Receipt	15

Work Order 1800154 Page 3 of 16

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1800154-01	OM-2	18-Jan-18 11:50	19-Jan-18 16:11	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
1800154-02	OM-4	18-Jan-18 12:20	19-Jan-18 16:11	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
1800154-03	OM-3	18-Jan-18 12:35	19-Jan-18 16:11	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
1800154-04	OM-1	18-Jan-18 12:55	19-Jan-18 16:11	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
1800154-05	OM-5	18-Jan-18 13:15	19-Jan-18 16:11	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L

Vista Project: 1800154 Client Project: 59850-03-13B

Work Order 1800154 Page 4 of 16

ANALYTICAL RESULTS

Work Order 1800154 Page 5 of 16

Sample ID: Method	Blank					EPA N	1ethod 8290	
Matrix: Aqueous Sample Size: 1.00 L		QC Batch: B8A0169 Date Extracted: 29-Jan-2018 7:47			ab Sample: B8A0169-BLK1 ate Analyzed : 31-Jan-18 19:57			
Analyte Conc.	(pg/L)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.414		IS	13C-2,3,7,8-TCDD	89.9	40 - 135	
1,2,3,7,8-PeCDD	ND	0.703			13C-1,2,3,7,8-PeCDD	91.7	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.805			13C-1,2,3,4,7,8-HxCDD	85.9	40 - 135	
1,2,3,6,7,8-HxCDD	ND	0.812			13C-1,2,3,6,7,8-HxCDD	86.0	40 - 135	
1,2,3,7,8,9-HxCDD	ND	0.893			13C-1,2,3,7,8,9-HxCDD	84.6	40 - 135	
1,2,3,4,6,7,8-HpCDD	ND	0.638			13C-1,2,3,4,6,7,8-HpCDD	71.5	40 - 135	
OCDD	ND	1.04			13C-OCDD	58.4	40 - 135	
2,3,7,8-TCDF	ND	0.402			13C-2,3,7,8-TCDF	80.3	40 - 135	
1,2,3,7,8-PeCDF	ND	0.847			13C-1,2,3,7,8-PeCDF	79.6	40 - 135	
2,3,4,7,8-PeCDF	ND	0.879			13C-2,3,4,7,8-PeCDF	79.8	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.424			13C-1,2,3,4,7,8-HxCDF	82.7	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.410			13C-1,2,3,6,7,8-HxCDF	84.7	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.454			13C-2,3,4,6,7,8-HxCDF	86.8	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.605			13C-1,2,3,7,8,9-HxCDF	81.9	40 - 135	
1,2,3,4,6,7,8-HpCDF	ND	0.496			13C-1,2,3,4,6,7,8-HpCDF	77.5	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.548			13C-1,2,3,4,7,8,9-HpCDF	78.4	40 - 135	
OCDF	ND	1.42			13C-OCDF	60.0	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	97.2	40 - 135	
					Toxic Equivalent Quotient (T	EQ) Data (pg/L)		
					TEQMinWHO2005Dioxin	0.00		
TOTALS								
Total TCDD	1.41							
Total PeCDD	ND	0.703						
Total HxCDD	ND	0.838						
Total HpCDD	ND	0.638						
Total TCDF	ND	0.402						
Total PeCDF	ND	0.864						
Total HxCDF	ND	0.468						
Total HpCDF	ND	0.521			CL - Lower control limit - upper control li			

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800154 Page 6 of 16

Sample ID: OPR								EPA Method 8290
Matrix: Aqueous Sample Size: 1.00 L			8A0169 9-Jan-2018	7:47		Lab Sample: B8A0169-BS1 Date Analyzed: 31-Jan-18 18:21	Column: ZB-5MS	
Analyte	Amt Found (pg/L)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
2,3,7,8-TCDD	207	200	104	70 - 130	IS	13C-2,3,7,8-TCDD	84.6	40 - 135
1,2,3,7,8-PeCDD	1010	1000	101	70 - 130		13C-1,2,3,7,8-PeCDD	75.4	40 - 135
1,2,3,4,7,8-HxCDD	936	1000	93.6	70 - 130		13C-1,2,3,4,7,8-HxCDD	83.8	40 - 135
1,2,3,6,7,8-HxCDD	989	1000	98.9	70 - 130		13C-1,2,3,6,7,8-HxCDD	81.3	40 - 135
1,2,3,7,8,9-HxCDD	940	1000	94.0	70 - 130		13C-1,2,3,7,8,9-HxCDD	83.1	40 - 135
1,2,3,4,6,7,8-HpCDD	1010	1000	101	70 - 130		13C-1,2,3,4,6,7,8-HpCDD	72.5	40 - 135
OCDD	1830	2000	91.7	70 - 130		13C-OCDD	59.1	40 - 135
2,3,7,8-TCDF	206	200	103	70 - 130		13C-2,3,7,8-TCDF	79.8	40 - 135
1,2,3,7,8-PeCDF	1010	1000	101	70 - 130		13C-1,2,3,7,8-PeCDF	69.7	40 - 135
2,3,4,7,8-PeCDF	959	1000	95.9	70 - 130		13C-2,3,4,7,8-PeCDF	66.8	40 - 135
1,2,3,4,7,8-HxCDF	1050	1000	105	70 - 130		13C-1,2,3,4,7,8-HxCDF	81.1	40 - 135
1,2,3,6,7,8-HxCDF	1030	1000	103	70 - 130		13C-1,2,3,6,7,8-HxCDF	82.1	40 - 135
2,3,4,6,7,8-HxCDF	1050	1000	105	70 - 130		13C-2,3,4,6,7,8-HxCDF	82.6	40 - 135
1,2,3,7,8,9-HxCDF	1060	1000	106	70 - 130		13C-1,2,3,7,8,9-HxCDF	81.9	40 - 135
1,2,3,4,6,7,8-HpCDF	1020	1000	102	70 - 130		13C-1,2,3,4,6,7,8-HpCDF	76.6	40 - 135
1,2,3,4,7,8,9-HpCDF	1010	1000	101	70 - 130		13C-1,2,3,4,7,8,9-HpCDF	79.6	40 - 135
OCDF	2240	2000	112	70 - 130		13C-OCDF	62.4	40 - 135
					CRS	37Cl-2,3,7,8-TCDD	86.1	40 - 135

LCL-UCL - Lower control limit - upper control limit

Work Order 1800154 Page 7 of 16

Sample ID: OM-2							EPA Mo	ethod 8290
Project: 59850-0	Consultants, Inc. 03-13B 2018 11:50	Sample Data Matrix: Groundwater Sample Size: 0.993 L		Lab QC	Sample: 1800154-01 Batch: B8A0169 e Analyzed: 31-Jan-18 22:20	Date Received: Date Extracted: Column: ZB-5MS		
Analyte Conc. (p	og/L)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND (0.349		IS	13C-2,3,7,8-TCDD	82.2	40 - 135	
1,2,3,7,8-PeCDD		0.675			13C-1,2,3,7,8-PeCDD	73.4	40 - 135	
1,2,3,4,7,8-HxCDD	ND (0.837			13C-1,2,3,4,7,8-HxCDD	77.7	40 - 135	
1,2,3,6,7,8-HxCDD	ND (0.881			13C-1,2,3,6,7,8-HxCDD	77.6	40 - 135	
1,2,3,7,8,9-HxCDD	ND (0.926			13C-1,2,3,7,8,9-HxCDD	78.6	40 - 135	
1,2,3,4,6,7,8-HpCDD	6.14		J		13C-1,2,3,4,6,7,8-HpCDD	69.1	40 - 135	
OCDD	70.2				13C-OCDD	60.3	40 - 135	
2,3,7,8-TCDF	ND (0.354			13C-2,3,7,8-TCDF	79.5	40 - 135	
1,2,3,7,8-PeCDF	ND (0.738			13C-1,2,3,7,8-PeCDF	69.8	40 - 135	
2,3,4,7,8-PeCDF	ND (0.785			13C-2,3,4,7,8-PeCDF	70.6	40 - 135	
1,2,3,4,7,8-HxCDF	ND (0.518			13C-1,2,3,4,7,8-HxCDF	77.1	40 - 135	
1,2,3,6,7,8-HxCDF	ND (0.527			13C-1,2,3,6,7,8-HxCDF	74.7	40 - 135	
2,3,4,6,7,8-HxCDF	ND (0.597			13C-2,3,4,6,7,8-HxCDF	76.1	40 - 135	
1,2,3,7,8,9-HxCDF	ND (0.732			13C-1,2,3,7,8,9-HxCDF	76.0	40 - 135	
1,2,3,4,6,7,8-HpCDF	17.0		J		13C-1,2,3,4,6,7,8-HpCDF	76.2	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND (0.695			13C-1,2,3,4,7,8,9-HpCDF	79.0	40 - 135	
OCDF	15.0		J		13C-OCDF	60.4	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	89.6	40 - 135	
					Toxic Equivalent Quotient (TEQ) Data (pg/L)		
					TEQMinWHO2005Dioxin	0.257		
TOTALS								
Total TCDD	ND 0.	349						<u> </u>
Total PeCDD		675						
Total HxCDD		882						
Total HpCDD	12.4							
Total TCDF		354						
Total PeCDF		762						
Total HxCDF	5.84							
Total HpCDF DL - Sample specifc estima	31.7							

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800154 Page 8 of 16

Sample ID: OM-4						EPA Method 82
Project: 59850	on Consultants, Inc. 0-03-13B n-2018 12:20	Sample Data Matrix: Ground Sample Size: 0.999 L		Laboratory Data Lab Sample: 1800154-02 QC Batch: B8A0169 Date Analyzed: 31-Jan-18 23:0	Date Received: Date Extracted: 08 Column: ZB-5MS	19-Jan-2018 16:11 29-Jan-2018 7:47
Analyte Conc.	(pg/L)	DL EMPC	Qualifiers	Labeled Standard	%R	LCL-UCL Qualifie
2,3,7,8-TCDD	ND	0.761		IS 13C-2,3,7,8-TCDD	79.0	40 - 135
1,2,3,7,8-PeCDD	ND	1.01		13C-1,2,3,7,8-PeCDD	79.7	40 - 135
1,2,3,4,7,8-HxCDD	ND	1.03		13C-1,2,3,4,7,8-HxCDD	78.7	40 - 135
1,2,3,6,7,8-HxCDD	ND	1.04		13C-1,2,3,6,7,8-HxCDD	79.2	40 - 135
1,2,3,7,8,9-HxCDD	ND	1.08		13C-1,2,3,7,8,9-HxCDD	79.4	40 - 135
1,2,3,4,6,7,8-HpCDD	5.81		J	13C-1,2,3,4,6,7,8-HpCDD	69.6	40 - 135
OCDD	52.2			13C-OCDD	61.8	40 - 135
2,3,7,8-TCDF	ND	0.443		13C-2,3,7,8-TCDF	78.0	40 - 135
1,2,3,7,8-PeCDF	ND	1.08		13C-1,2,3,7,8-PeCDF	74.4	40 - 135
2,3,4,7,8-PeCDF	ND	1.03		13C-2,3,4,7,8-PeCDF	74.7	40 - 135
1,2,3,4,7,8-HxCDF	ND	0.606		13C-1,2,3,4,7,8-HxCDF	72.8	40 - 135
1,2,3,6,7,8-HxCDF	ND	0.608		13C-1,2,3,6,7,8-HxCDF	72.2	40 - 135
2,3,4,6,7,8-HxCDF	ND	0.675		13C-2,3,4,6,7,8-HxCDF	74.4	40 - 135
1,2,3,7,8,9-HxCDF	ND	0.860		13C-1,2,3,7,8,9-HxCDF	75.4	40 - 135
1,2,3,4,6,7,8-HpCDF	9.15		J	13C-1,2,3,4,6,7,8-HpCDF	78.7	40 - 135
1,2,3,4,7,8,9-HpCDF	ND	0.692		13C-1,2,3,4,7,8,9-HpCDF	80.1	40 - 135
OCDF	8.23		J	13C-OCDF	61.4	40 - 135
				CRS 37Cl-2,3,7,8-TCDD	88.4	40 - 135
				Toxic Equivalent Quotient (T)	EQ) Data (pg/L)	
				TEQMinWHO2005Dioxin	0.168	
TOTALS						
Total TCDD	ND	0.761				
Total PeCDD	ND	1.01				
Total HxCDD	ND	1.05				
Total HpCDD	11.7					
Total TCDF	ND	0.443				
Total PeCDF	ND	1.06				
Total HxCDF	ND	1.62				
Total HpCDF	16.3			LCL-UCL - Lower control limit - upper control lin		

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800154 Page 9 of 16

Sample ID: OM-3							EPA Me	ethod 8290
Project: 59850-03	Consultants, Inc. 3-13B 018 12:35	Sample Data Matrix: Groundwater Sample Size: 0.983 L		Lab QC	Doratory Data Sample: 1800154-03 Batch: B8A0169 e Analyzed: 31-Jan-18 23:56	Date Received: Date Extracted: Column: ZB-5MS		
Analyte Conc. (pg	g/L)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD		.604		IS	13C-2,3,7,8-TCDD	77.8	40 - 135	
, ,-,·,- · -		.815			13C-1,2,3,7,8-PeCDD	76.4	40 - 135	
1,2,3,4,7,8-HxCDD	ND 1	.00			13C-1,2,3,4,7,8-HxCDD	74.6	40 - 135	
1,2,3,6,7,8-HxCDD	ND 1	.06			13C-1,2,3,6,7,8-HxCDD	74.9	40 - 135	
1,2,3,7,8,9-HxCDD	ND 1	.03			13C-1,2,3,7,8,9-HxCDD	73.4	40 - 135	
1,2,3,4,6,7,8-HpCDD	11.5		J		13C-1,2,3,4,6,7,8-HpCDD	66.4	40 - 135	
OCDD	122				13C-OCDD	55.3	40 - 135	
2,3,7,8-TCDF	ND 0	.424			13C-2,3,7,8-TCDF	76.0	40 - 135	
1,2,3,7,8-PeCDF	ND 1	.01			13C-1,2,3,7,8-PeCDF	70.3	40 - 135	
2,3,4,7,8-PeCDF	ND 1	.05			13C-2,3,4,7,8-PeCDF	71.7	40 - 135	
1,2,3,4,7,8-HxCDF	ND 0	.544			13C-1,2,3,4,7,8-HxCDF	71.9	40 - 135	
1,2,3,6,7,8-HxCDF	ND 0	.547			13C-1,2,3,6,7,8-HxCDF	70.4	40 - 135	
2,3,4,6,7,8-HxCDF	ND 0	.579			13C-2,3,4,6,7,8-HxCDF	73.4	40 - 135	
1,2,3,7,8,9-HxCDF	ND 0	.756			13C-1,2,3,7,8,9-HxCDF	73.4	40 - 135	
1,2,3,4,6,7,8-HpCDF	8.63		J		13C-1,2,3,4,6,7,8-HpCDF	70.8	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND 0	.631			13C-1,2,3,4,7,8,9-HpCDF	76.0	40 - 135	
OCDF	6.47		J		13C-OCDF	58.2	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	94.9	40 - 135	
					Toxic Equivalent Quotient (TEQ)) Data (pg/L)		
					TEQMinWHO2005Dioxin	0.240		
TOTALS								
Total TCDD	ND 0.6	504						
		315						
		03						
	22.5							
		124						
		03						
	5.40							
Total HpCDF DL - Sample specifc estimat	14.7							

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800154 Page 10 of 16

Sample ID: OM-1							EPA M	ethod 8290
Project: 59850	on Consultants, Inc. 0-03-13B n-2018 12:55	Sample Data Matrix: Groundwater Sample Size: 1.00 L		Lab QC	Sample: 1800154-04 Batch: B8A0169 e Analyzed: 01-Feb-18 00:43	Date Received: Date Extracted: Column: ZB-5MS	19-Jan-2018 29-Jan-2018	
Analyte Conc.	. (pg/L)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.580		IS	13C-2,3,7,8-TCDD	81.1	40 - 135	
1,2,3,7,8-PeCDD	ND	0.885			13C-1,2,3,7,8-PeCDD	82.8	40 - 135	
1,2,3,4,7,8-HxCDD	ND	1.71			13C-1,2,3,4,7,8-HxCDD	76.6	40 - 135	
1,2,3,6,7,8-HxCDD	ND	1.71			13C-1,2,3,6,7,8-HxCDD	74.3	40 - 135	
1,2,3,7,8,9-HxCDD	ND	1.83			13C-1,2,3,7,8,9-HxCDD	75.7	40 - 135	
1,2,3,4,6,7,8-HpCDD	32.3				13C-1,2,3,4,6,7,8-HpCDD	67.9	40 - 135	
OCDD	292				13C-OCDD	56.3	40 - 135	
2,3,7,8-TCDF	ND	0.409			13C-2,3,7,8-TCDF	76.0	40 - 135	
1,2,3,7,8-PeCDF	ND	0.877			13C-1,2,3,7,8-PeCDF	70.6	40 - 135	
2,3,4,7,8-PeCDF	ND	0.827			13C-2,3,4,7,8-PeCDF	70.5	40 - 135	
1,2,3,4,7,8-HxCDF	ND	1.30			13C-1,2,3,4,7,8-HxCDF	74.4	40 - 135	
1,2,3,6,7,8-HxCDF	ND	1.31			13C-1,2,3,6,7,8-HxCDF	73.7	40 - 135	
2,3,4,6,7,8-HxCDF	ND	1.43			13C-2,3,4,6,7,8-HxCDF	74.0	40 - 135	
1,2,3,7,8,9-HxCDF	ND	2.00			13C-1,2,3,7,8,9-HxCDF	74.1	40 - 135	
1,2,3,4,6,7,8-HpCDF	512				13C-1,2,3,4,6,7,8-HpCDF	74.9	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	1.92			13C-1,2,3,4,7,8,9-HpCDF	78.7	40 - 135	
OCDF	262				13C-OCDF	55.7	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	90.8	40 - 135	
					Toxic Equivalent Quotient (TEQ) Data (pg/L)		
					TEQMinWHO2005Dioxin	5.61		
TOTALS								
Total TCDD	ND	0.580						
Total PeCDD	ND	0.885						
Total HxCDD	8.66							
Total HpCDD	66.2							
Total TCDF		0.409						
Total PeCDF	8.20							
Total HxCDF	120							
Total HpCDF	792							
DL - Sample specifc est	imated detection limit			LCL-UC	L- Lower control limit - upper control limit			

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800154 Page 11 of 16

Sample ID: OM-5								EPA M	lethod 8290
Project: 59850	on Consultants, Inc. 0-03-13B n-2018 13:15	Sample Matrix Sample			Lab QC	Doratory Data Sample: 1800154-05 Batch: B8A0169 e Analyzed: 01-Feb-18 01:31	Date Received: Date Extracted: Column: ZB-5MS	29-Jan-2018	
Analyte Conc.	. (pg/L)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.745			IS	13C-2,3,7,8-TCDD	64.9	40 - 135	
1,2,3,7,8-PeCDD	ND	1.79				13C-1,2,3,7,8-PeCDD	65.0	40 - 135	
1,2,3,4,7,8-HxCDD	ND	1.82				13C-1,2,3,4,7,8-HxCDD	60.9	40 - 135	
1,2,3,6,7,8-HxCDD	2.95			J		13C-1,2,3,6,7,8-HxCDD	62.5	40 - 135	
1,2,3,7,8,9-HxCDD	ND	1.94				13C-1,2,3,7,8,9-HxCDD	62.1	40 - 135	
1,2,3,4,6,7,8-HpCDD	86.5					13C-1,2,3,4,6,7,8-HpCDD	57.0	40 - 135	
OCDD	858					13C-OCDD	47.4	40 - 135	
2,3,7,8-TCDF	ND	0.529				13C-2,3,7,8-TCDF	52.2	40 - 135	
1,2,3,7,8-PeCDF	ND	1.12				13C-1,2,3,7,8-PeCDF	52.0	40 - 135	
2,3,4,7,8-PeCDF	ND	0.949				13C-2,3,4,7,8-PeCDF	54.1	40 - 135	
1,2,3,4,7,8-HxCDF	1.57			J		13C-1,2,3,4,7,8-HxCDF	60.4	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.941				13C-1,2,3,6,7,8-HxCDF	59.0	40 - 135	
2,3,4,6,7,8-HxCDF	2.48			J		13C-2,3,4,6,7,8-HxCDF	59.7	40 - 135	
1,2,3,7,8,9-HxCDF	ND	1.30				13C-1,2,3,7,8,9-HxCDF	58.8	40 - 135	
1,2,3,4,6,7,8-HpCDF	177					13C-1,2,3,4,6,7,8-HpCDF	62.3	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	1.53				13C-1,2,3,4,7,8,9-HpCDF	64.1	40 - 135	
OCDF	97.5					13C-OCDF	47.1	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	95.9	40 - 135	
						Toxic Equivalent Quotient (TEQ) Data (pg/L)		
						TEQMinWHO2005Dioxin	3.62		
TOTALS									
Total TCDD	ND	0.745							
Total PeCDD	3.83								
Total HxCDD	30.6								
Total HpCDD	193								
Total TCDF	ND	0.529							
Total PeCDF	4.08								
Total HxCDF	66.6								
Total HpCDF	286								
DL - Sample specifc esti	imated detection limit				LCL-UC	L- Lower control limit - upper control limit			

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800154 Page 12 of 16

DATA QUALIFIERS & ABBREVIATIONS

В This compound was also detected in the method blank. D **Dilution** \mathbf{E} The associated compound concentration exceeded the calibration range of the instrument. Η Recovery and/or RPD was outside laboratory acceptance limits. **Chemical Interference** I J The amount detected is below the Reporting Limit/LOQ. \mathbf{M} **Estimated Maximum Possible Concentration.** (CA Region 2 projects only) **See Cover Letter** Conc. Concentration NA Not applicable ND **Not Detected** TEQ **Toxic Equivalency** \mathbf{U}

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Not Detected (specific projects only)

Work Order 1800154 Page 13 of 16

CERTIFICATIONS

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	17-015-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1322288
New Hampshire Environmental Accreditation Program	207717
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-008
Pennsylvania Department of Environmental Protection	014
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	9077
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 1800154 Page 14 of 16

Submit	by	Email*
	-	

*A printed COC must accompany all samples.

Print Form

FOR LABORAT	ORY USE ONLY		
Laboratory Proje	ct ID: 180154		°C
Storage ID:	WF-2	Storage Secured Yes No	.: -

CHAIN OF CUSTODY RECORD

CITTAIN	OI V		JIODI KE		11	ע										heck On	
Project I.D.: S985	0-03	-138	P.O. #: 745	-			Sam	pler:	J. Es	guir	Name)			F	Rush (sur	21 d charge may	
Invoice to: Name Nick Husty Relinquished by: (primary)	11.61	Comp	pany con Date:	Addres Gold	S Ve	the	1 D.	Heoc Receive	Ran	reho	Cord	State	CA Z	ip I	h# 9	16-85	Fax #
Relinquished by: (Printed N		Vicabi	Hastings 1.19. Date:	18	/	me:			18	ma	nd Printed N	male	n	Sydine	Date:	oton 0	Time: 1/19/18 1614 Time:
			See "Sample Log-	in Che	ckli	ist"	for a	dditio	nal sa	mple	infor	matio	n				
SHIP TO: Vista Analy 1104 Windf El Dorado H	ield Way Iills, CA 9:	5762	Method of Shipment:	Ad	d An	alysis	(es) R	equested		/	241013	/ 65	248290	FR.	A8780	EPAIR	it fire fill fill fill fill fill fill fill fil
(916) 673-1:	520 LEEax (9	916) 673-0	Tracking No.:	_ -		ntain	//	100	Participal Contraction of the Co	7	//	//	1	7	1	//	
Sample ID	Date	Time	Location/Sample Description		Manti	CAR!	Matrix	21871JB	Maria Car	1. Call 1. C.	Schlister 1324	23187 S	and to	2) (1) (8)		ST STON	
0m-2	1/18/18	1150	OM-7	2	1	0				X					11		
om-4	1' 1'	1220	O.M.H	1	1					1					11		
om-3		1235	0M-3		П	П				$\dashv \vdash$					\top		- 1-1-1-1 <u>- 1-1-1-1</u> (1
0M-1		1255	OM-1												+	$\dashv \dashv$	
om-5	V	1315	DM-5	予	=	Ā				Ť					廿		
				-		\vdash				+	\vdash	+	-	\vdash	++		
															\parallel		
				+		\vdash	\vdash					+	-	H	++	\dashv	
pecial Instructions/Com	ments:										Name:	N;,	ole 1	tes t	ings		
		_					DO	SEN CUMEN			Compa						
						_		O RESU			Address City:				State:	7	ip:
											Phone:	916 8	5791	12	Fax:		
ontainer Types: A = 1 Lite	er Amber, G	= Glass Ja		eservative	Туре	e: 🔲	T = Thi	osulfate,			Email:	hast	nac	@ 9	eoco	nine.	com
P = PUF, T = MM5 Train, C) = Other			ther							SD = Sec	/pes: Di liment, S	/v = Drin SL = Sluc	king vvat dge, SO	er, EF = = Soil, W	Eπiuent, F ∕W = Wast	PP = Pulp/Paper, ewater, B=Blood/Serum
											O = Ot	her a	con	200	ter		

Sample Log-in Checklist

Vista Work Orde	r#:	80015	14			tat2	-1		
Samples	Date/Tim		(1	li	nitials:			P-2	
Arrival:	01/19/18 1611				3K		Shelf/Rack: N/A		
	Date/Time			5233	nitials:		Location: WR-2		
Logged In:	01/20/18 1228		B	O	WS		Shelf/Rack: <u>C-2</u>	,C-5	
Delivered By:	FedEx	FedEx UPS On Tra		Trac	GSO	DHI	Hand Delivered	Other	
Preservation:	Ice			Blue Ice		Dry Ice None			
Temp °C: 0,1	(uncorr	rected)	Time:	i	012		The war a week at ID	. ID 4	
Temp °C: ∅₃∅	(corre	ected)	Probe	used	: Yes□	NoIX	Thermometer ID	: IK-4	

					YES	NO	NA
Adequate Sample Vol	√						
Holding Time Accepta	V						
Shipping Container(s)	V						
Shipping Custody Sea			V				
Shipping Documentati	on Pres	sent?					/
Airbill			V				
Sample Container Inta	ict?				V		
Sample Custody Seals	s Intact′	?					V
Chain of Custody / Sa	mple Do	ocumentation Pre	sent?		V		
COC Anomaly/Sample	е Ассер	tance Form comp	leted?			/	1
If Chlorinated or Drink	ing Wat	er Samples, Acce	ptable Pres	servation?			/
Preservation Documer	nted:	Na ₂ S ₂ O ₃	Trizma	None	Yes	No	NA
Shipping Container		Vista	Client	Retain	Return	Dis	oose

Comments:

ID.: LR - SLC

Rev No.: 0

Rev Date: 05/18/2017

Page: 1 of 1

APPENDIX B

MONITORING WELL SAMPLING DATA

Project Name: The Landing – Old Mill	Project Number: S9850-03-13B				
Well No.: OM-1	Date: 1/18/2018				
Well Diameter: 2 in.	Field Personnel: JE				
Casing Length: 16.85 feet	Screened Casing Length: 7 feet				
Well Elevation: 3,511.04 feet MSL measured from	om top of casing				

PURGE CHARACTERISTICS					
Water Depth Before Purging: 5.10 ft.	2 in. = .1632 Gal/ft. 4 in. = .6528 Gal/ft.				
Calculated Water Column Volume: 1.92 Gal.	Volumes Purged: 3.13				
Start Purging Time: 1121	End Purging Time: 1125				
Total Time: 4 min.	Flow Gauge:				
Total Volume Purged: 6 Gal.	Avg. Flow Rate: 1.5 gpm				
Water Depth After Purging:	Time:				
Dissolved Oxygen:	Free Product: (Y/N); No				

	SAMPLING CHARACTERISTICS								
Purging Method: submersible pump Sampling Method: disposable bailer									
Laboratory Analysis: DRO, ORO, metals, dioxins									
		UCTIVITY nhos/cm)	рН	Gallons Purged					
1122	11.4		80	7.58	2				
1123	12.5		75	7.45	4				
1125	12.6		74	7.30	6				
1255					Sample				

comments: Turbid, Silty; no odor		

Project Name: The Landing – Old Mill	Project Number: S9850-03-13B	
Well No.: OM-2	Date: 1/18/2018	
Well Diameter: 2 in.	Field Personnel: JE	
Casing Length: 21.98 feet	Screened Casing Length: 10 feet	
Well Elevation: 3,509.07 feet MSL measured from top of casing		

PURGE CHARACTERISTICS			
Water Depth Before Purging: 8.88 ft.	2 in. = .1632 Gal/ft. 4 in. = .6528 Gal/ft.		
Calculated Water Column Volume: 2.14 Gal.	Volumes Purged: 3.04		
Start Purging Time: 1005	End Purging Time: 1009		
Total Time: 4 min.	Flow Gauge:		
Total Volume Purged: 6.5 Gal.	Avg. Flow Rate: 1.6 gpm		
Water Depth After Purging:	Time:		
Dissolved Oxygen:	Free Produ	uct: (Y/N); No	

SAMPLING CHARACTERISTICS					
Purging Method: submersible pump Sampling Method: disposable bailer			bailer		
Laboratory Analys	sis: DRO, ORO, me	etals, dio	xins		
TIME	TEMPERATURE (°C)	CONDUCTIVITY pH Gallons Purg (umhos/cm)		Gallons Purged	
1006	11.1	151		7.96	2
1007	10.8	96		7.65	4
1009	9.9	80		7.35	6.5
1150					Sample

comments: Slightly turbid; no odor
Well was going dry near end of 3 rd purged volume.

Project Name: The Landing – Old Mill	Project Number: S9850-03-13B	
Well No.: OM-3	Date: 1/18/2018	
Well Diameter: 2 in.	Field Personnel: JE	
Casing Length: 25.60 feet	Screened Casing Length: 15 feet	
Well Elevation: 3,503.29 feet MSL measured from top of casing		

PURGE CHARACTERISTICS		
Water Depth Before Purging: 9.62 ft.	2 in. = .1632 Gal/ft. 4 in. = .6528 Gal/ft.	
Calculated Water Column Volume: 2.61 Gal.	Volumes Purged: 2.3	
Start Purging Time: 1045	End Purging Time: 1053	
Total Time: 8 min.	Flow Gauge:	
Total Volume Purged: 6 Gal.	Avg. Flow Rate: 1.3 gpm	
Water Depth After Purging:	Time:	
Dissolved Oxygen:	Free Product: (Y/N); No	

SAMPLING CHARACTERISTICS					
Purging Method: submersible pump Sampling Method: disposable bailer				bailer	
Laboratory Analy	sis: DRO, ORO, me	tals, dio	xins		
TIME	TEMPERATURE (°C)		CONDUCTIVITY pH (umhos/cm)		Gallons Purged
1047	9.7	131		6.82	3
1048	9.6		151	6.74	5
1053	10.2	134		6.60	6
1235					Sample

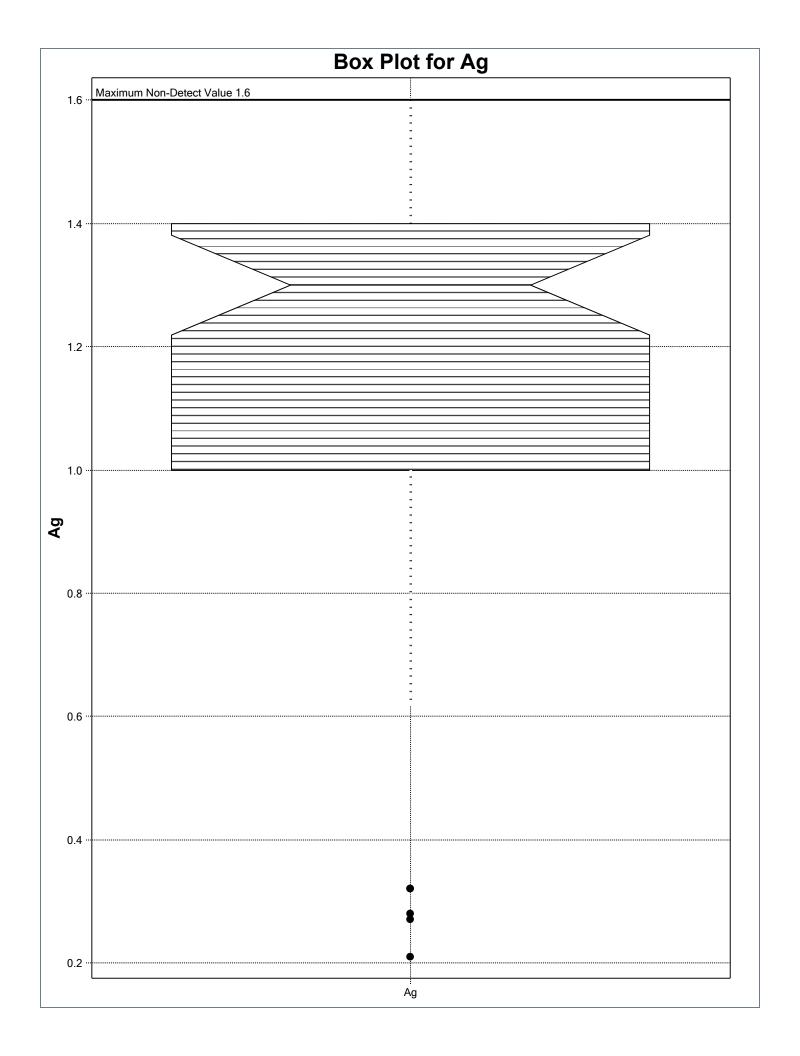
comments: Turbid, silty; no odor
Dry at 6 gallons.

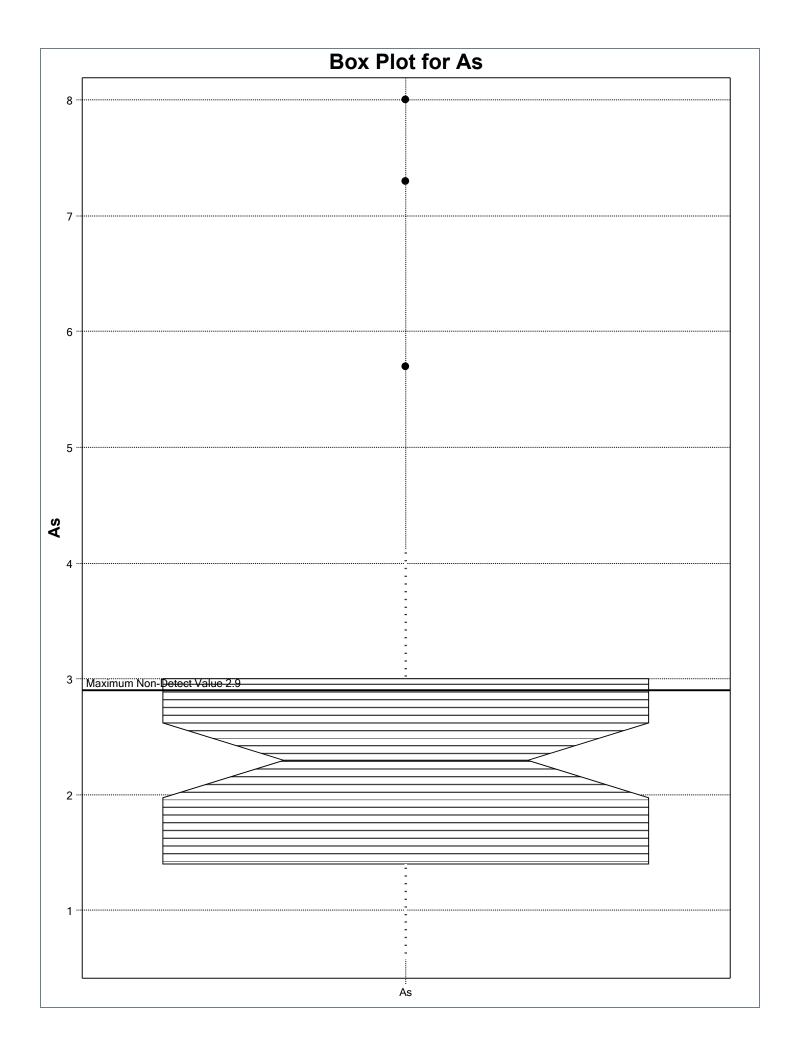
Project Name : The Landing – Old Mill	Project Number: S9850-03-13B	
Well No.: OM-4	Date: 1/18/2018	
Well Diameter: 2 in.	Field Personnel: JE	
Casing Length: 30.38 feet	Screened Casing Length: 15 feet	
Well Elevation: 3490.79 feet MSL measured from top of casing		

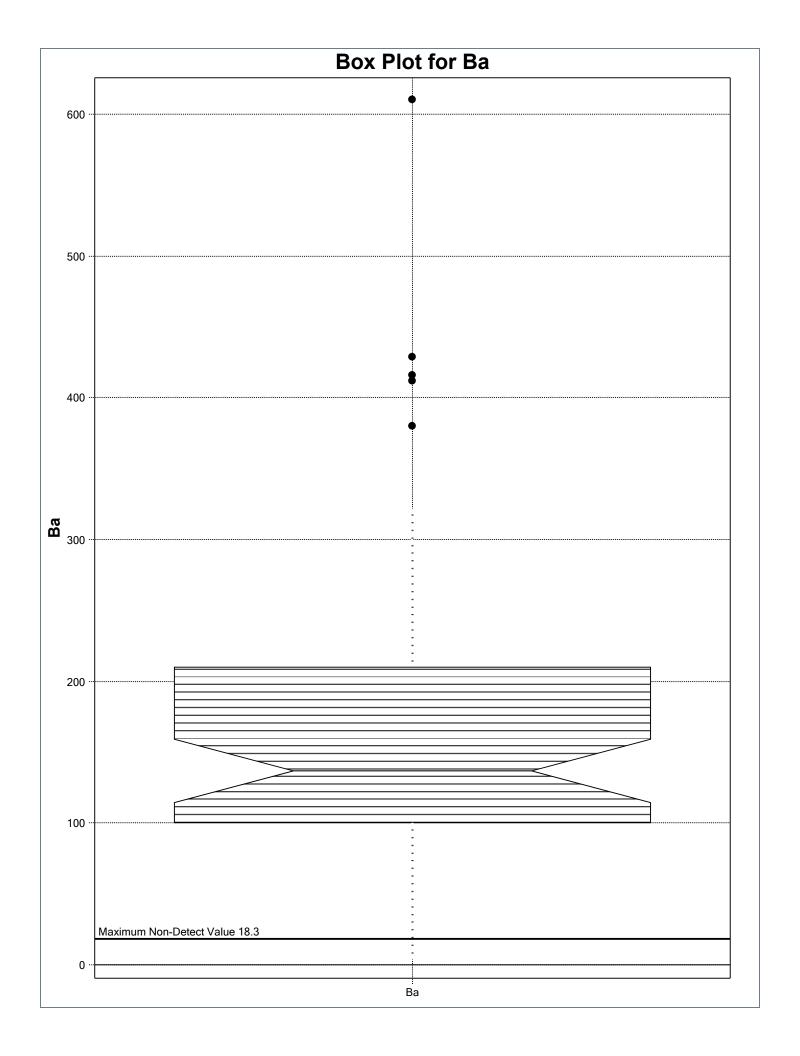
PURGE CHARACTERISTICS		
Water Depth Before Purging: 6.24 ft.	2 in. = .1632 Gal/ft. 4 in. = .6528 Gal/ft.	
Calculated Water Column Volume: 3.94 Gal.	Volumes Purged: 2.5	
Start Purging Time: 1025	End Purging Time: 1031	
Total Time: 6 min.	Flow Gauge:	
Total Volume Purged: 10 Gal.	Avg. Flow Rate: 1.7 gpm	
Water Depth After Purging:	Time:	
Dissolved Oxygen:	Free Product: (Y/N); No	

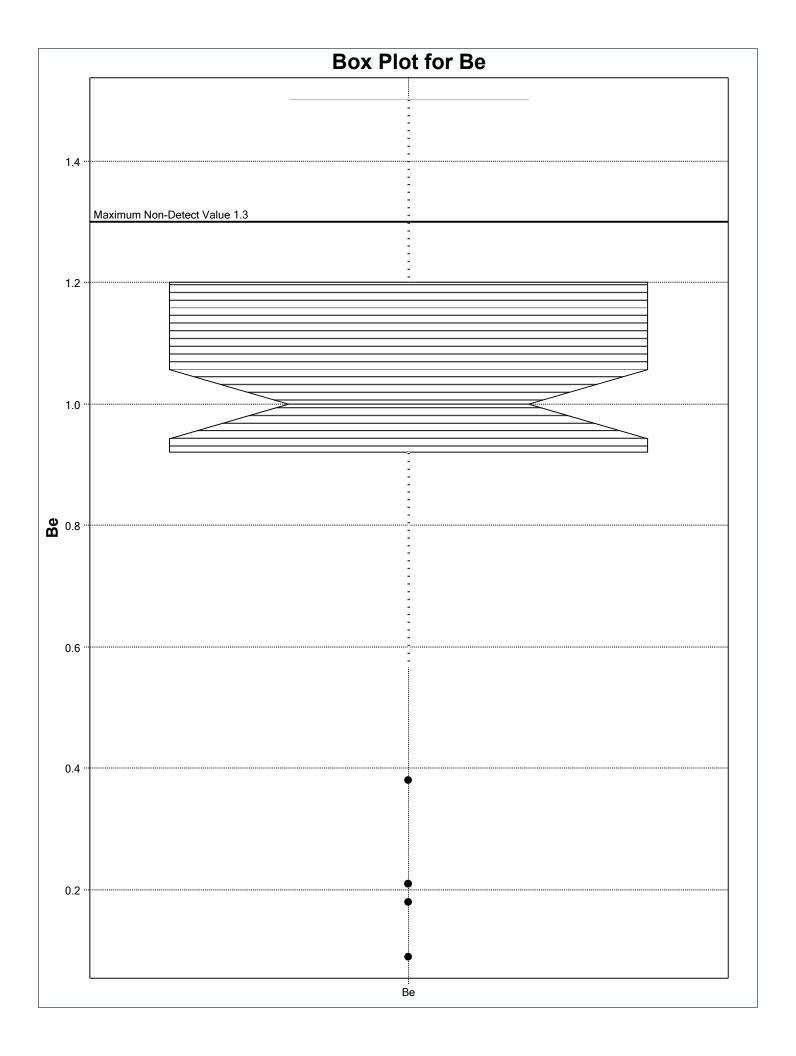
SAMPLING CHARACTERISTICS					
Purging Method: submersible pump Sampling Method: disposable bailer				bailer	
Laboratory Analy	sis: DRO, ORO, me	etals, dio	xins		
TIME	TEMPERATURE (°C)		CONDUCTIVITY (umhos/cm)		Gallons Purged
1027	10.3	89		7.86	4
1029	11.2		136	7.18	8
1031	10.7	137		7.01	10
1220					Sample

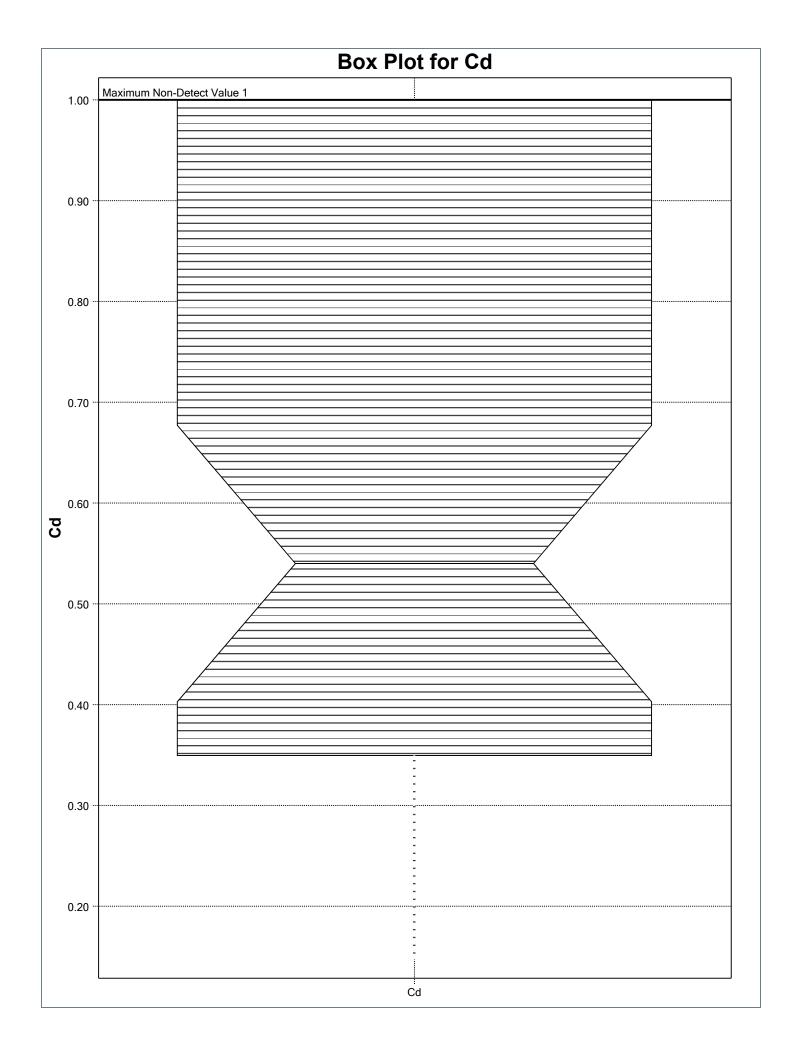
comments: Turbid and silty; no odor
Well went dry at 10 gallons.

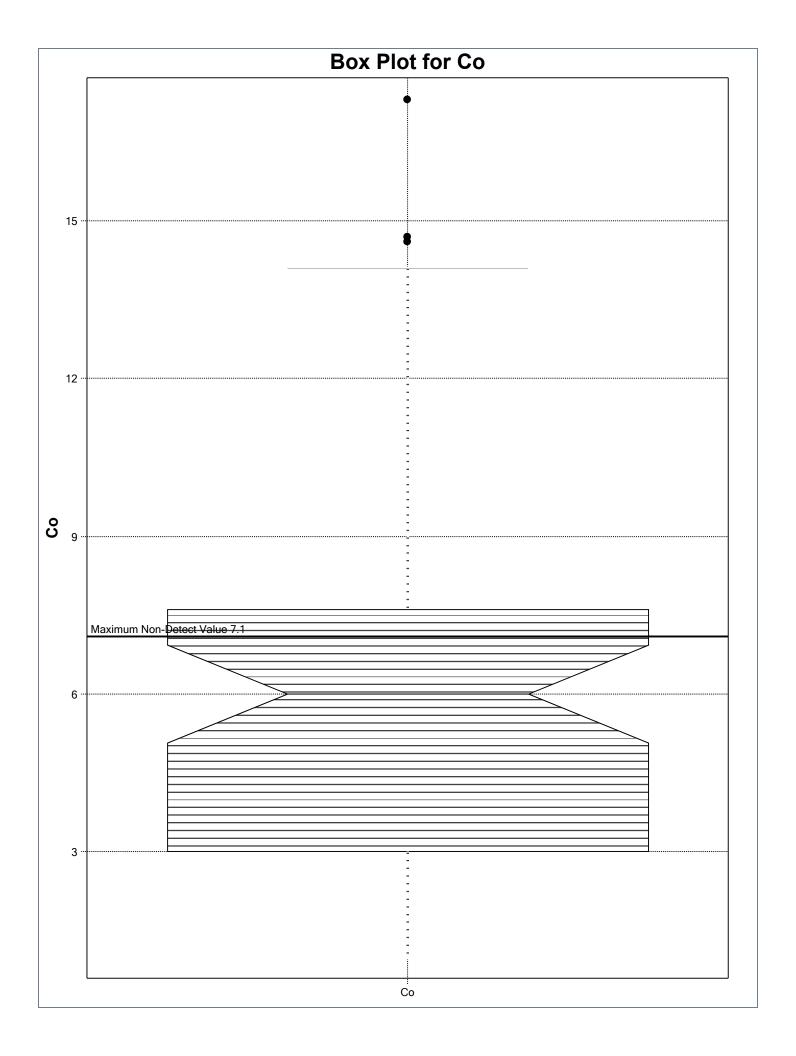

Project Name: The Landing – Old Mill	Project Number: S9850-03-13B		
Well No.: OM-5	Date: 1/18/2018		
Well Diameter: 2 in.	Field Personnel: JE		
Casing Length: 32.83 feet	Screened Casing Length: 15 feet		
Well Elevation: 3,503.14 feet MSL measured from top of casing			

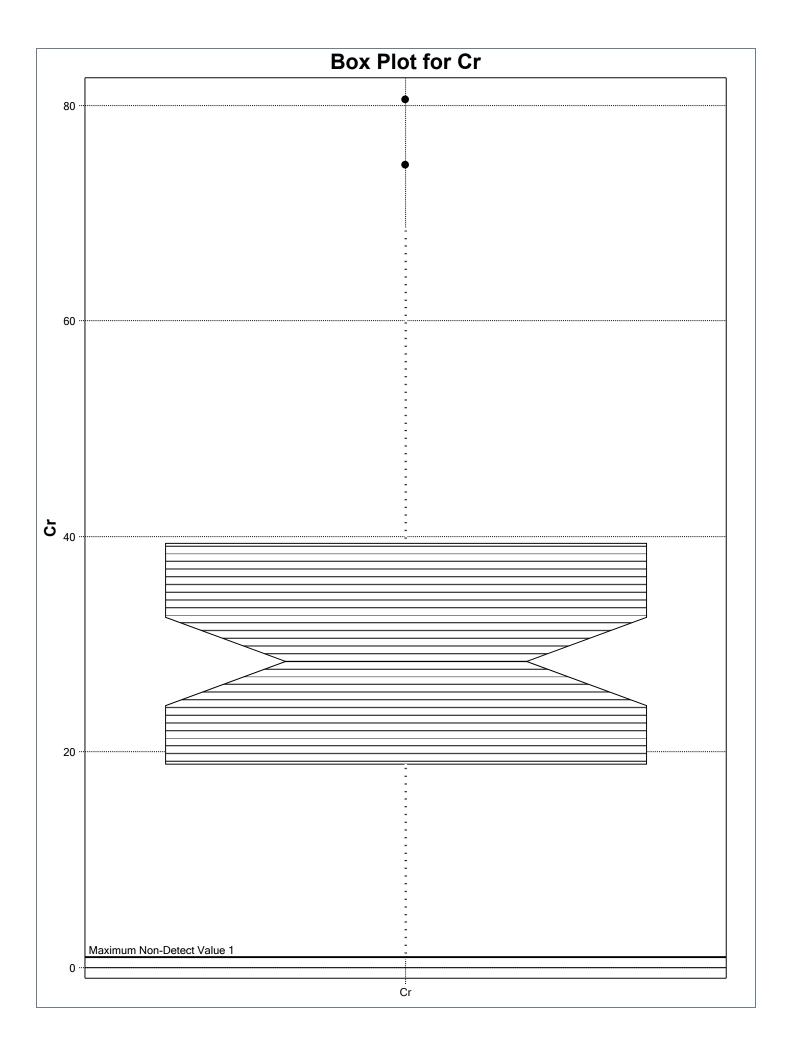

PURGE CHARACTERISTICS				
Water Depth Before Purging: 20.31 ft.	2 in. = .1632 Gal/ft. 4 in. = .6528 Gal/ft.			
Calculated Water Column Volume: 2.04 Gal.	Volumes Purged: 3.2			
Start Purging Time: 1107	End Purging Time: 1110			
Total Time: 3 min.	Flow Gauge:			
Total Volume Purged: 6.5 Gal.	Avg. Flow Rate: 2.2 gpm			
Water Depth After Purging:	Time:			
Dissolved Oxygen:	Free Product: (Y/N); No			

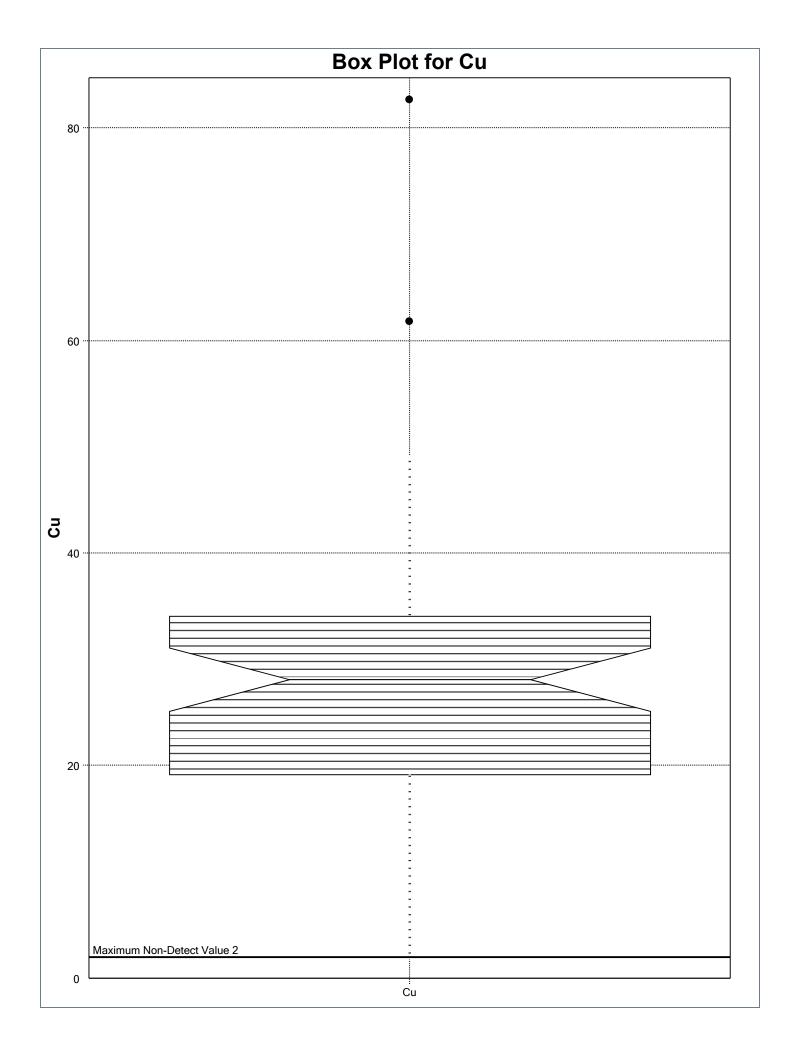

SAMPLING CHARACTERISTICS						
Purging Method: submersible pump		Sampling Method: disposable bailer				
Laboratory Analysis: DRO, ORO, metals, dioxins						
TIME	TEMPERATURE (°C)	CONDUCTIVITY (umhos/cm)		рН	Gallons Purged	
1108	11.3	198		7.40	2	
1109	12.1	202		7.02	4	
1110	12.3	242		6.78	6.5	
1315					Sample	

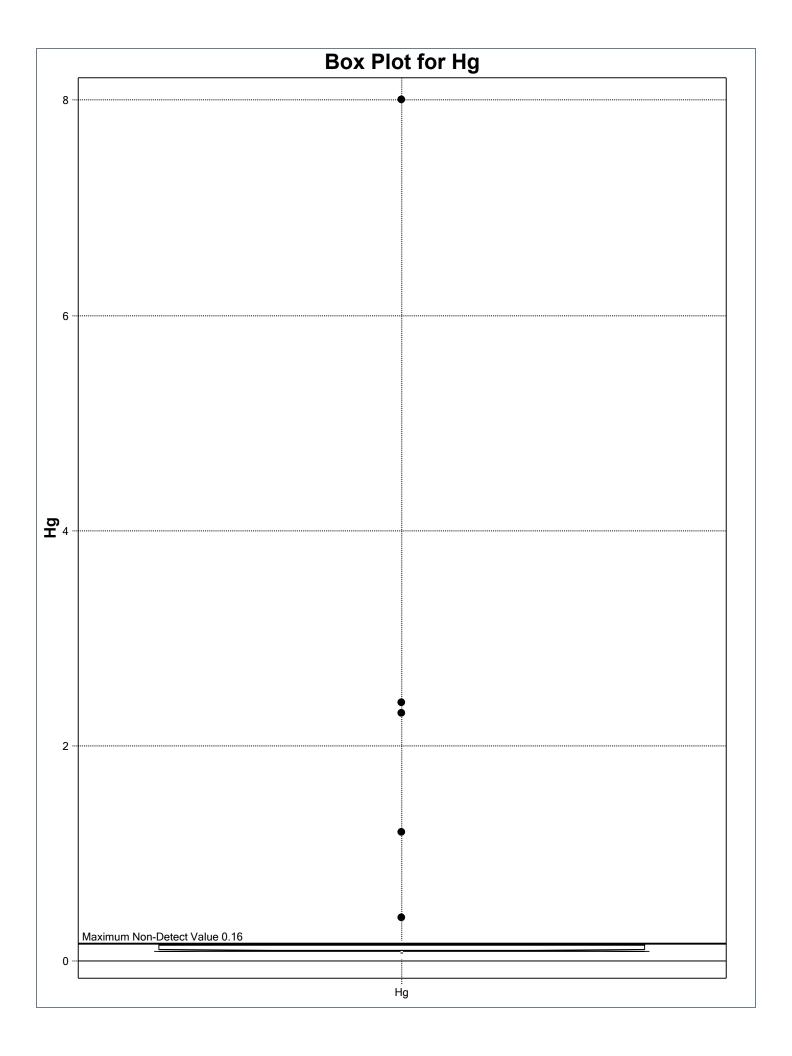

comments: Turbid, grayish, no odor; 2 nd volume had a slight odor					

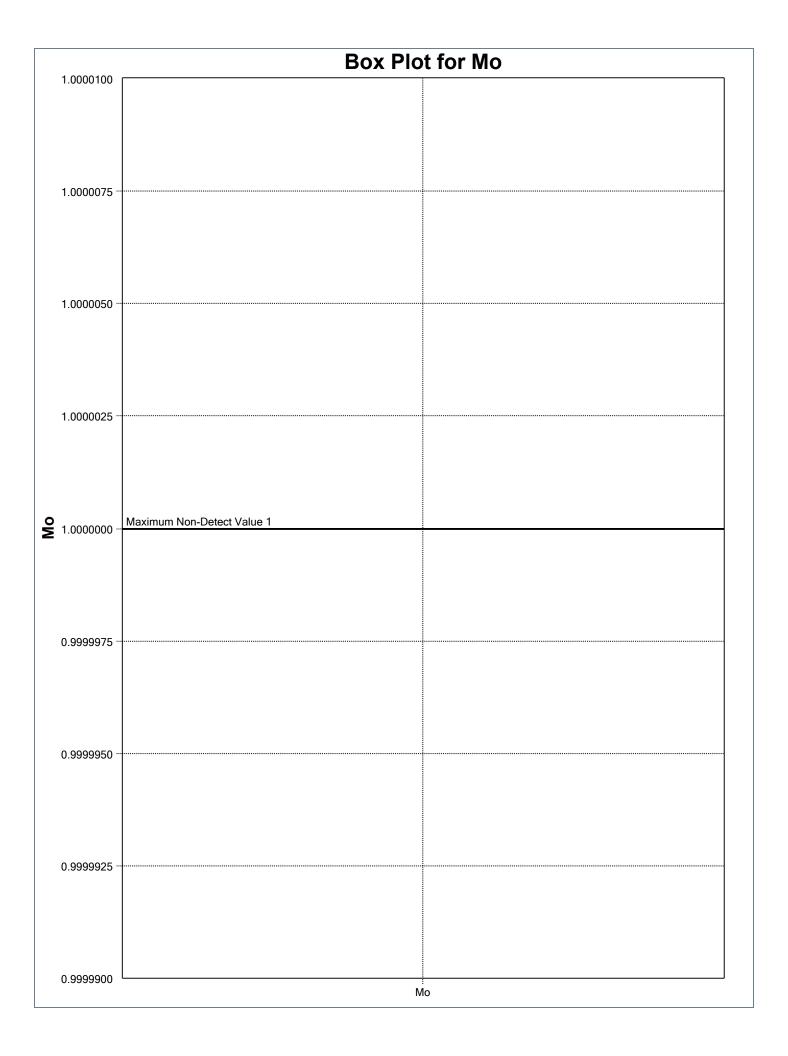

APPENDIX C

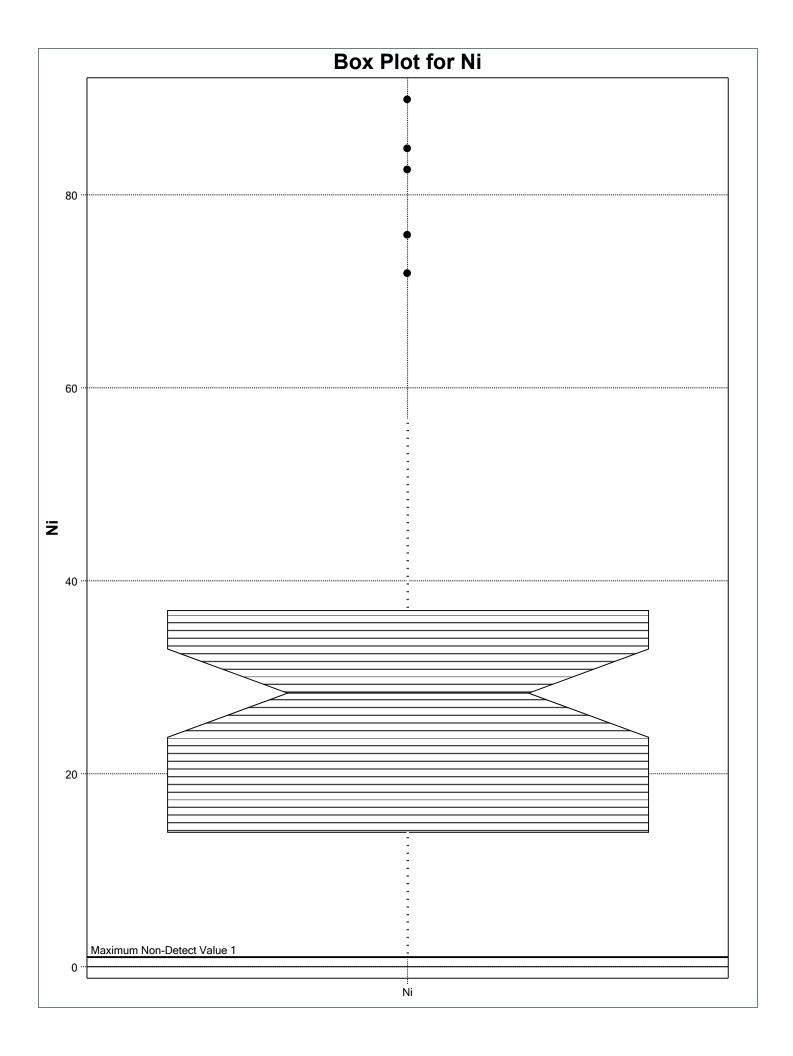


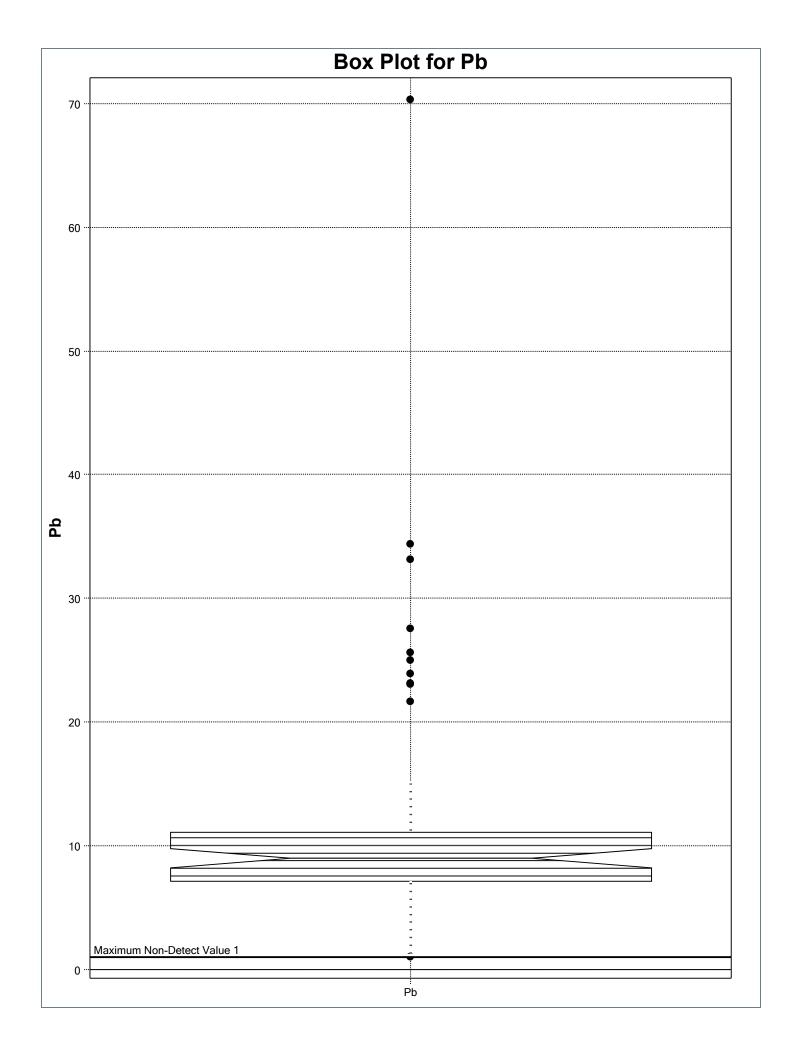


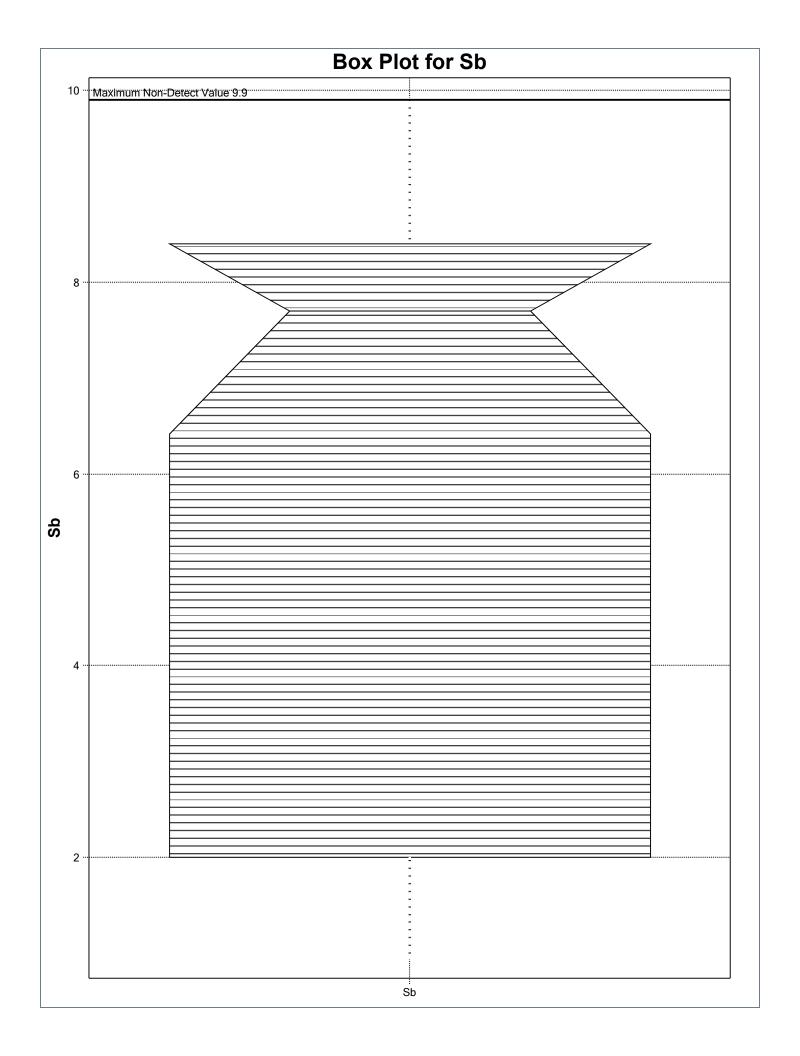


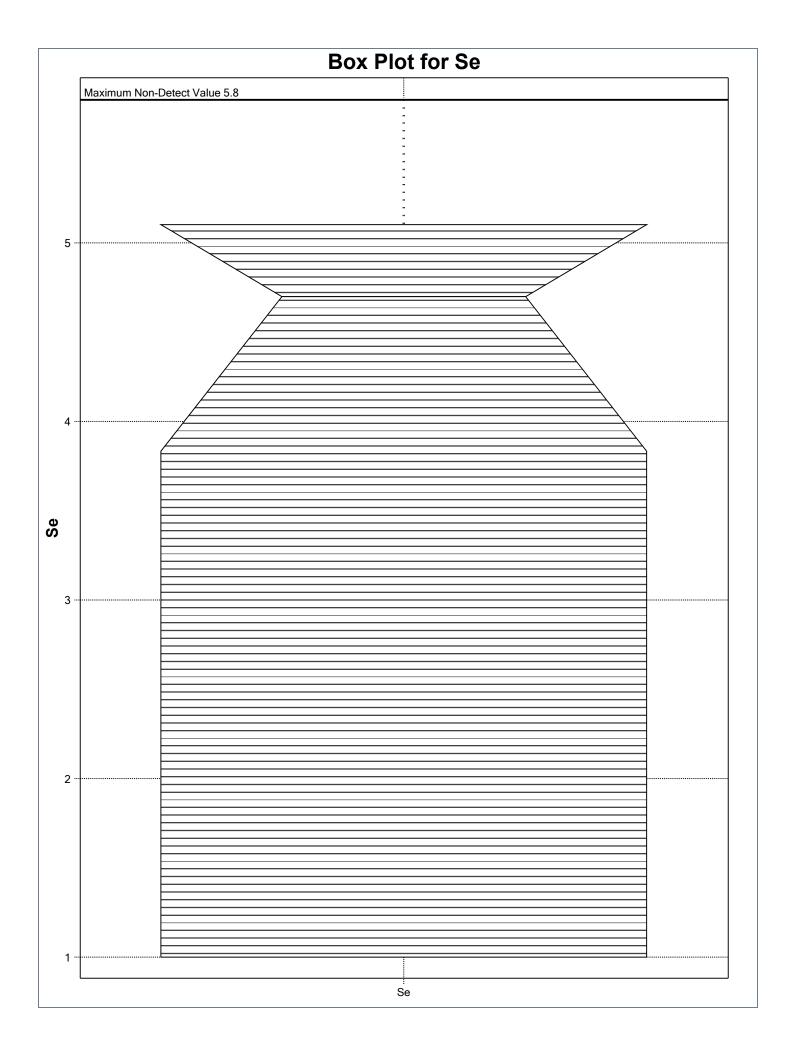


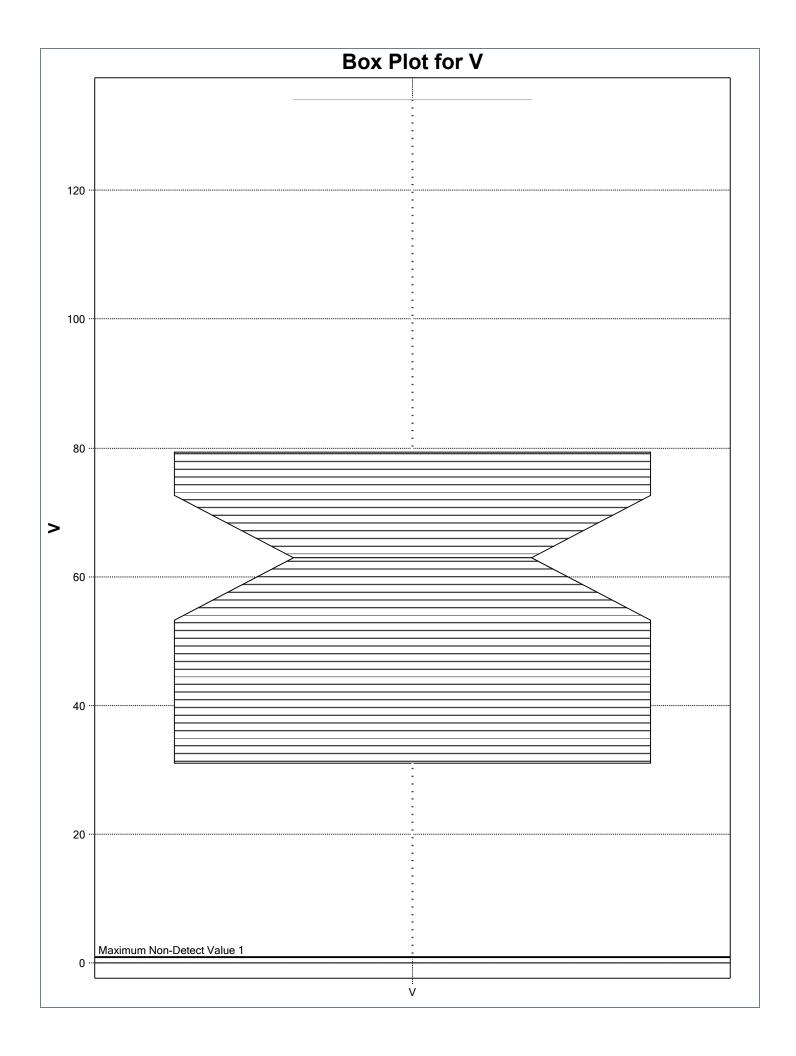


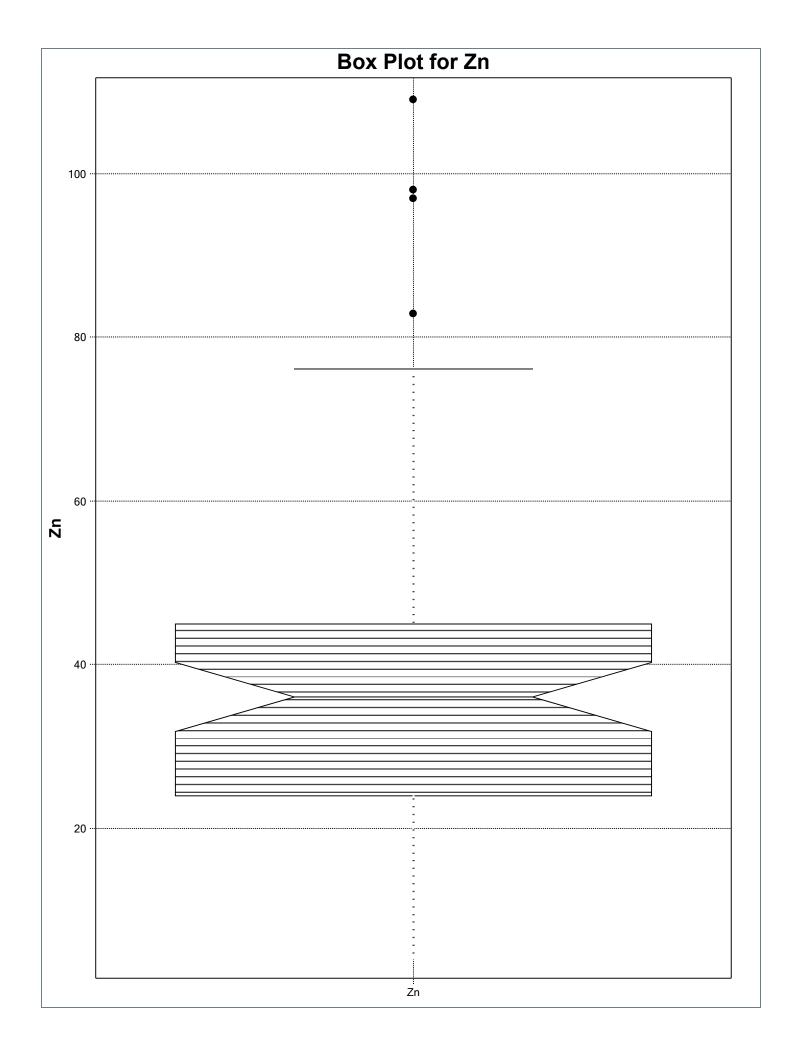


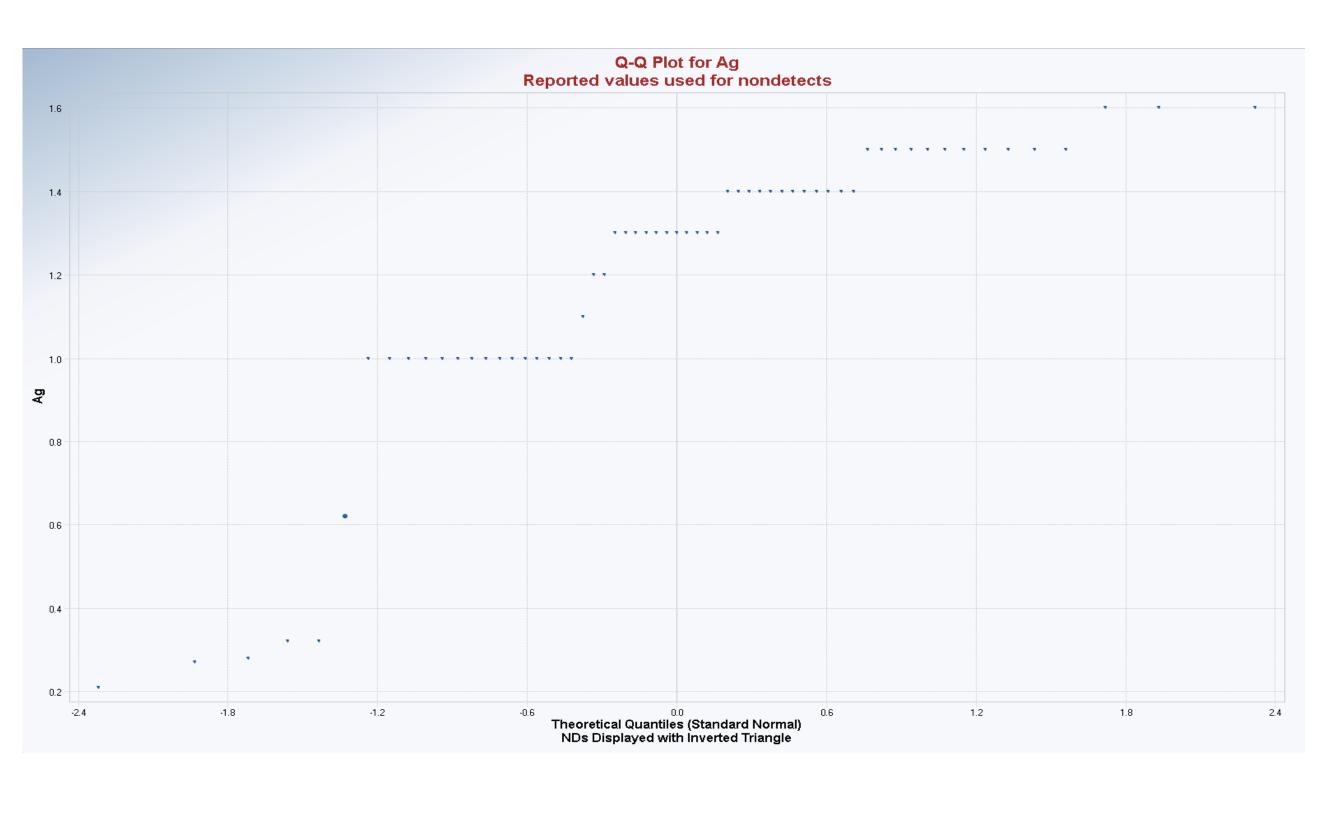


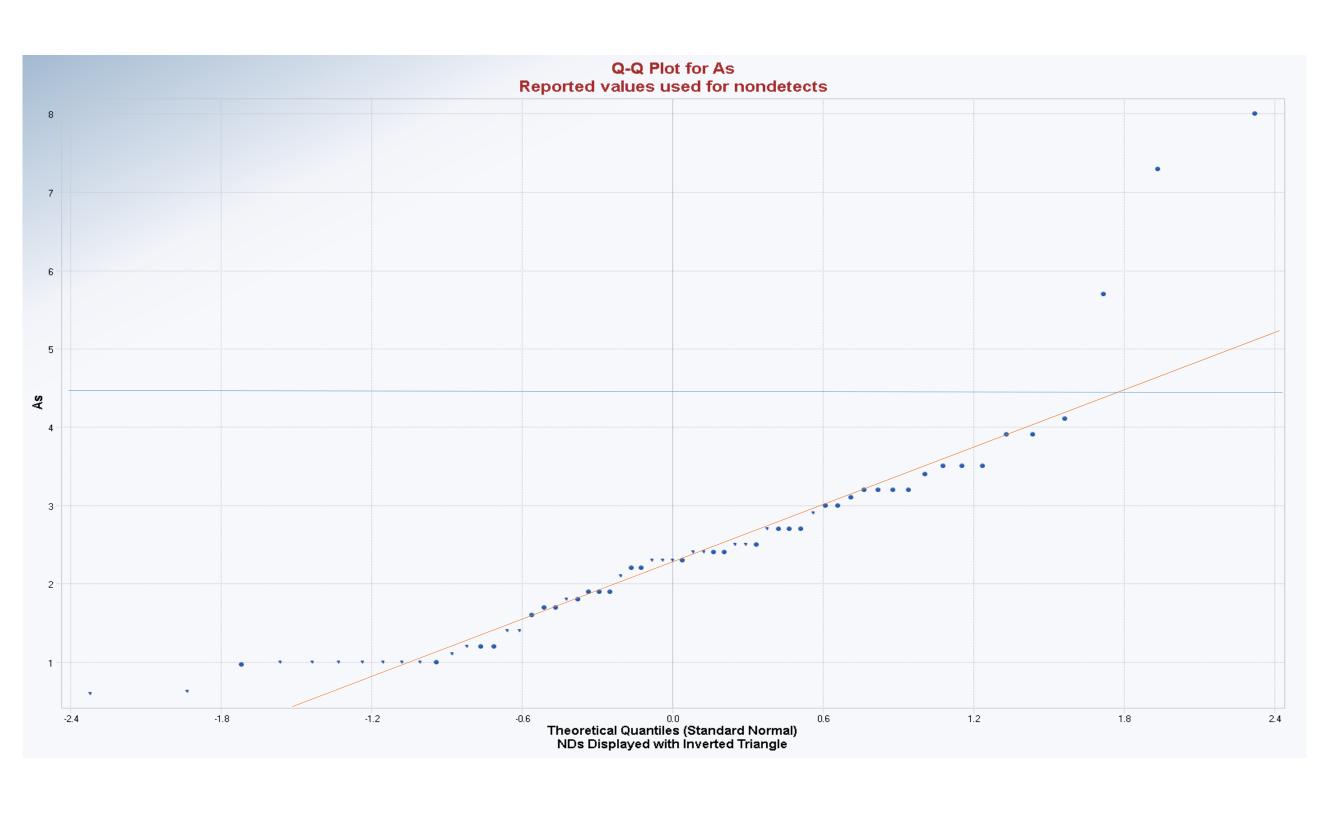


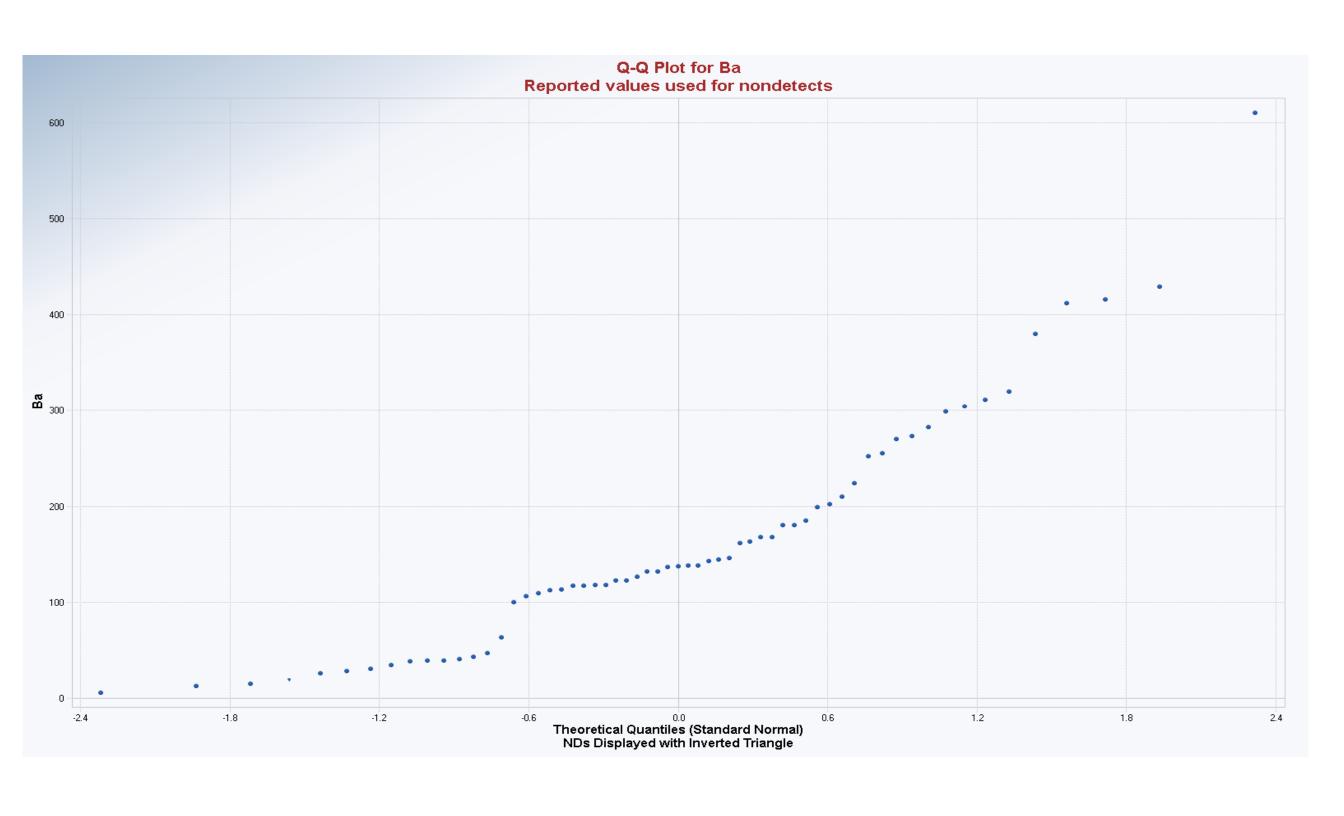


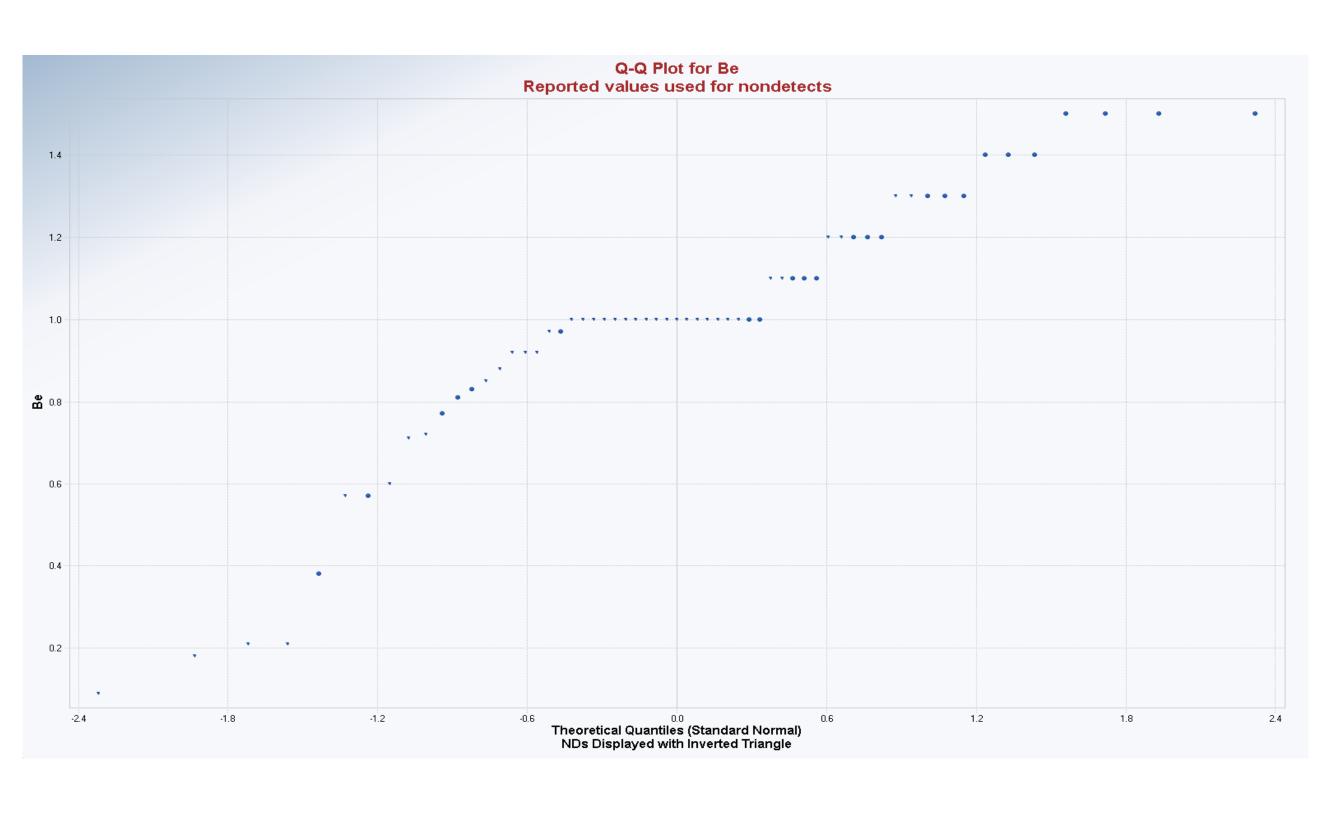


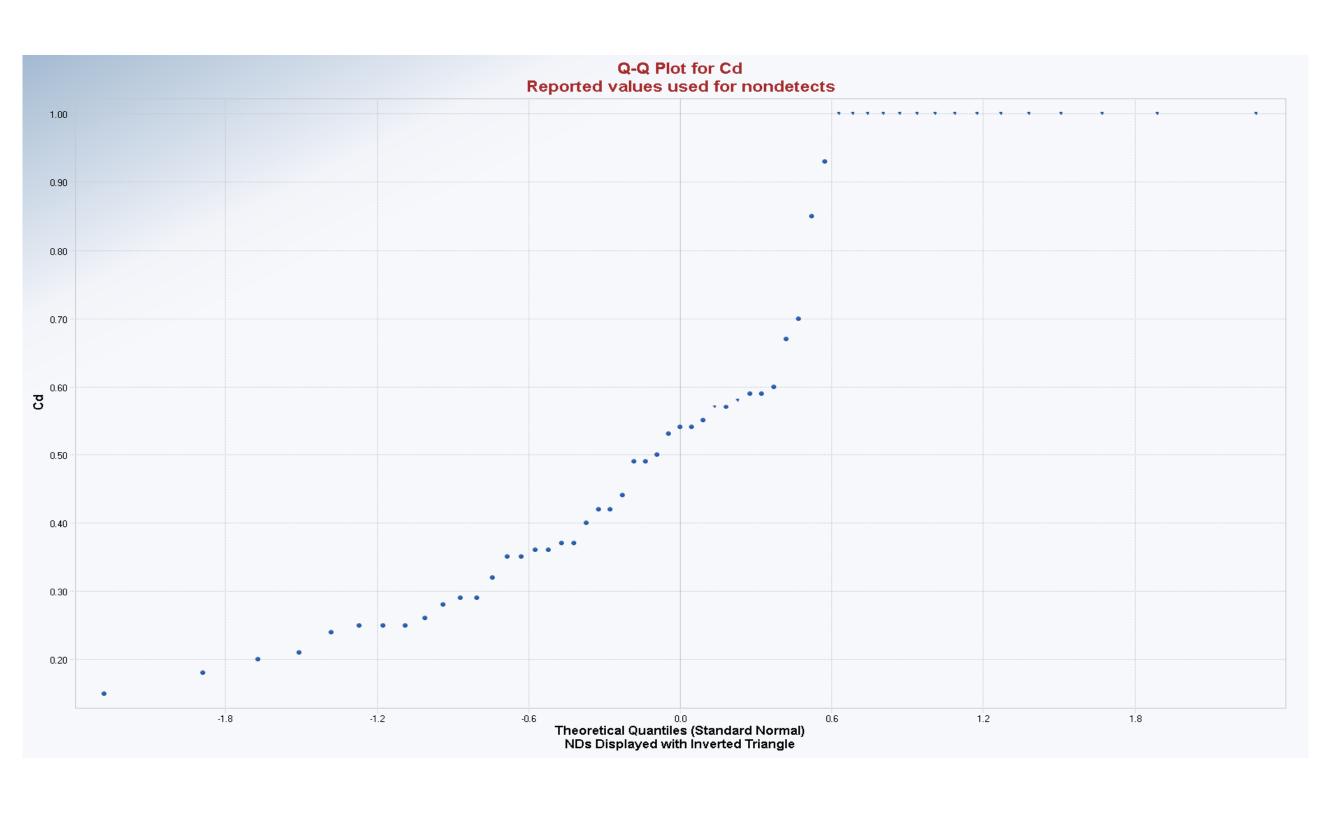


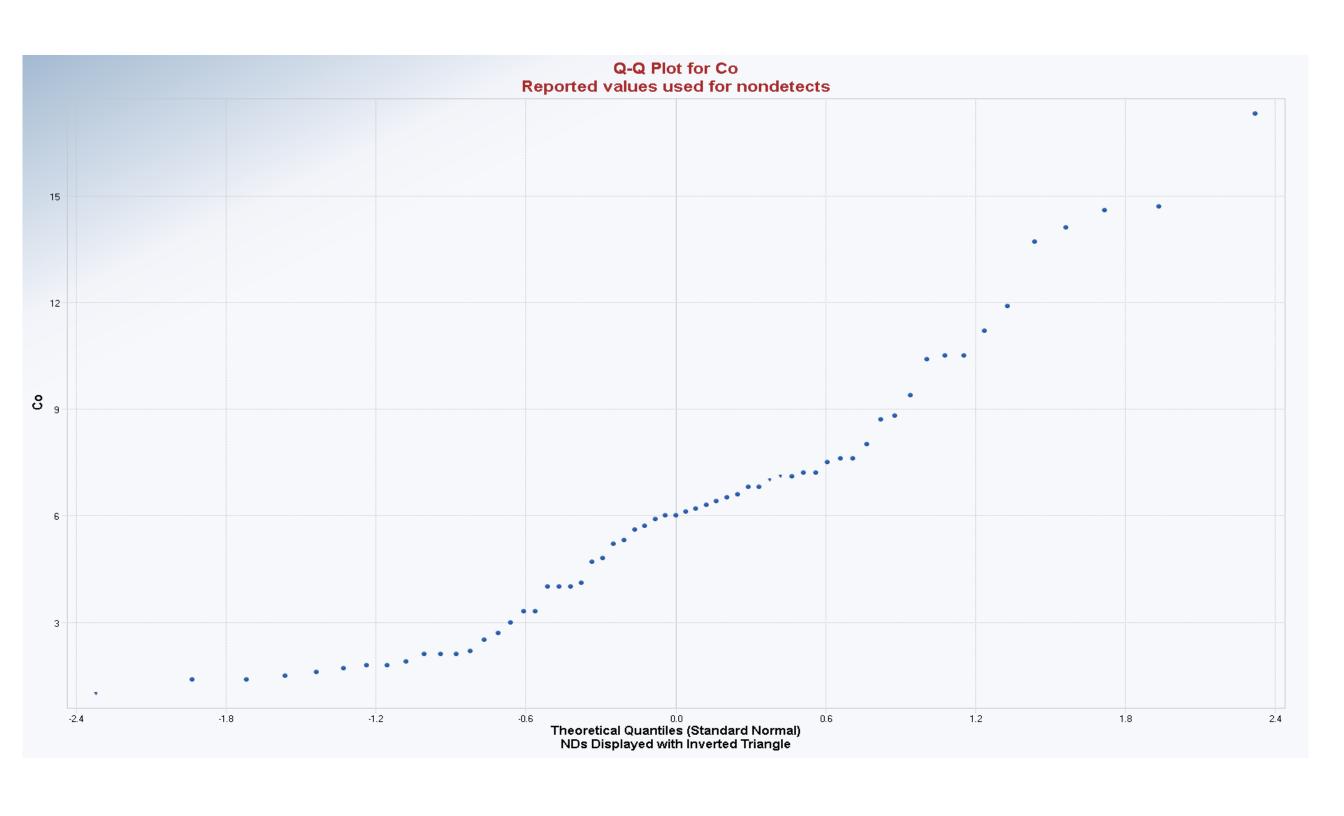


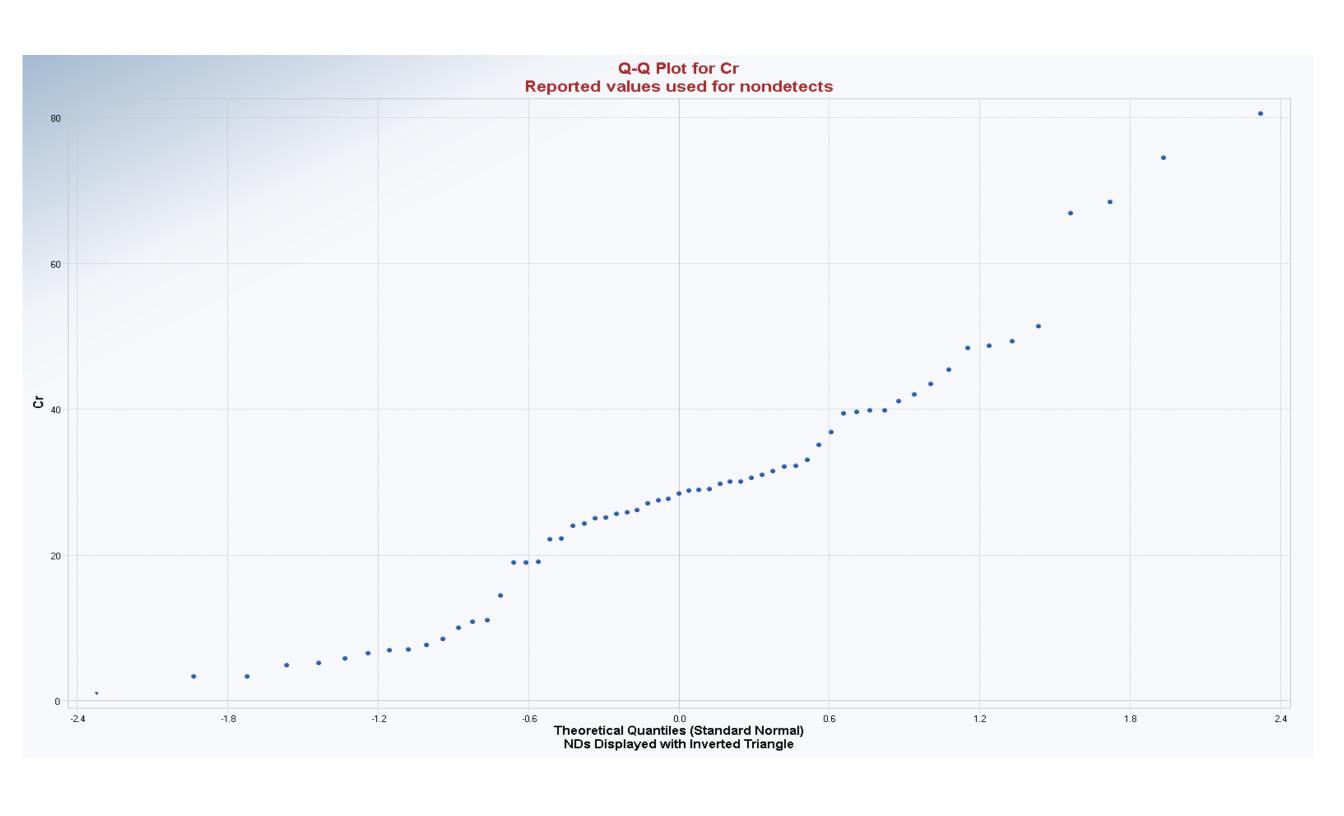


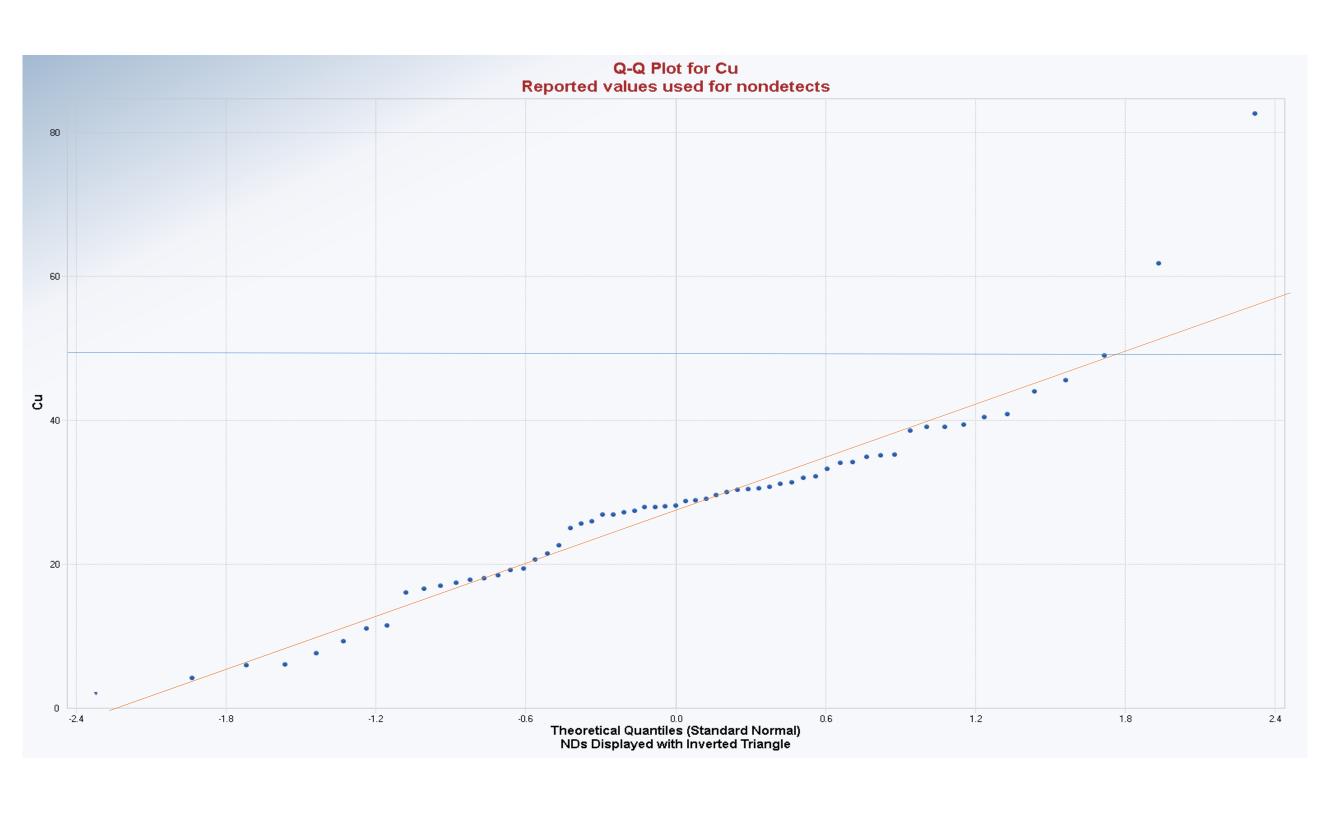


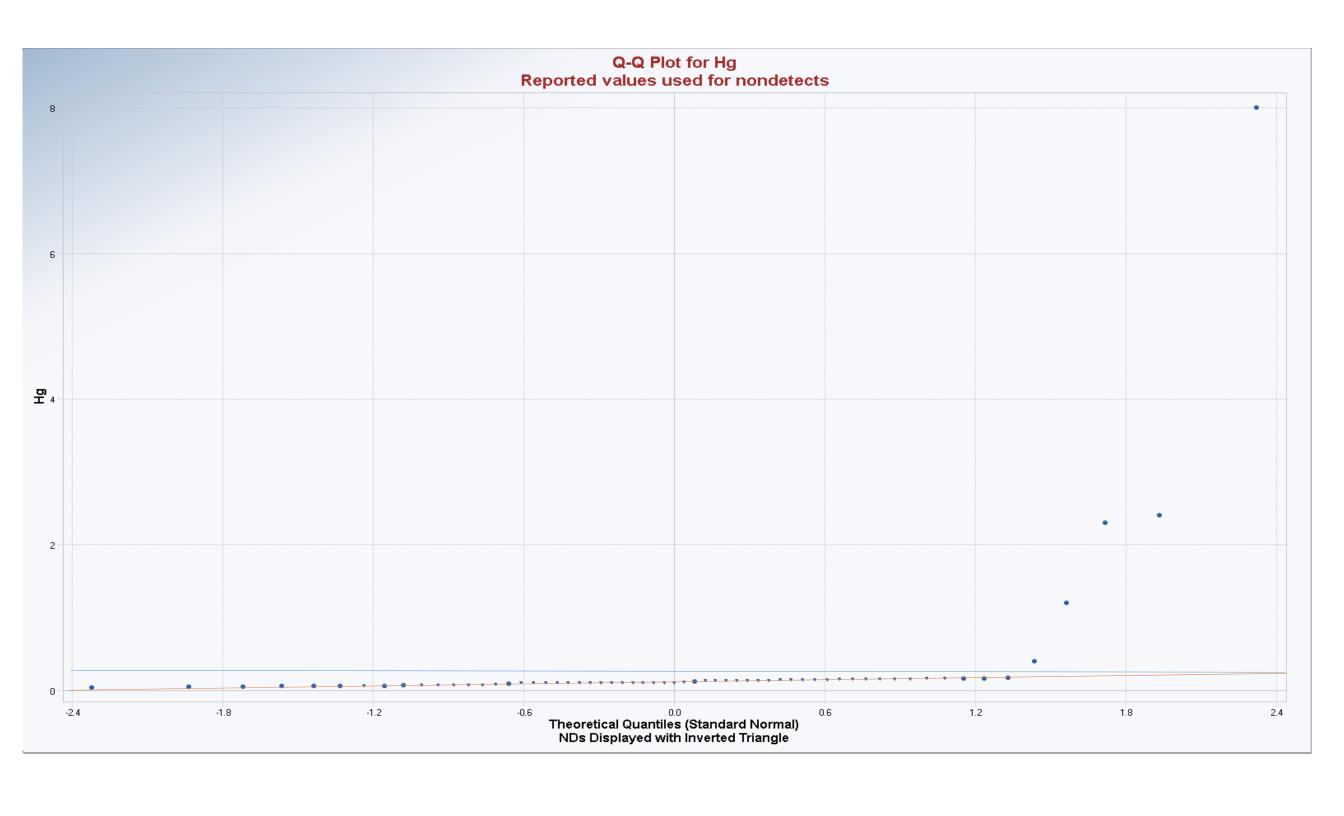


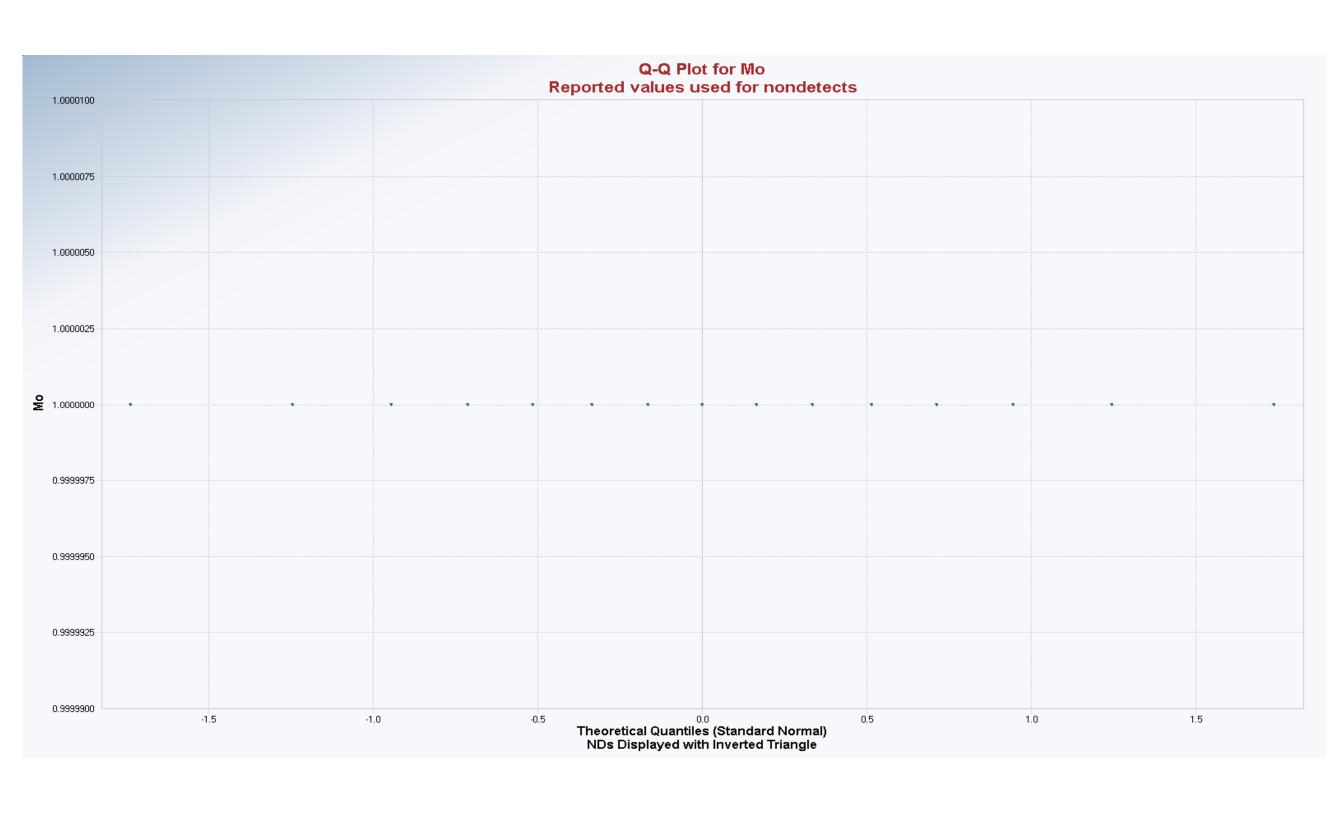


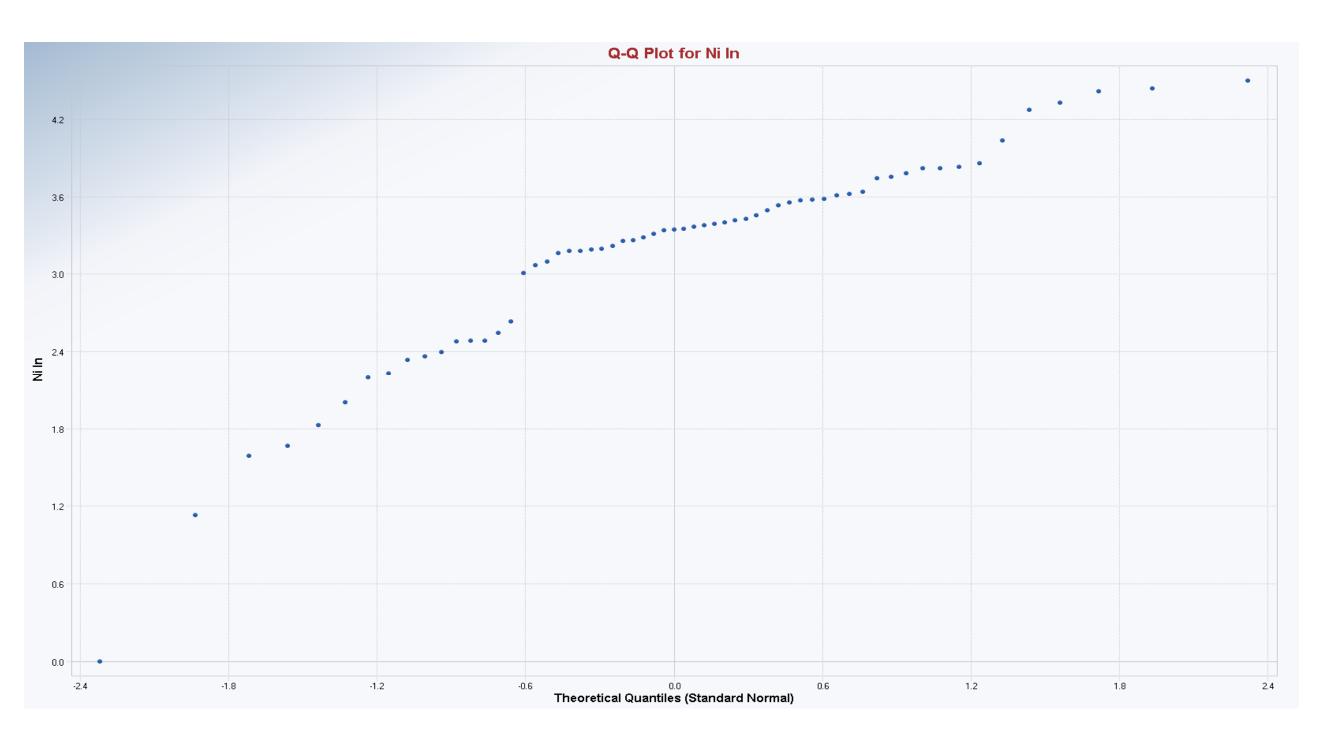


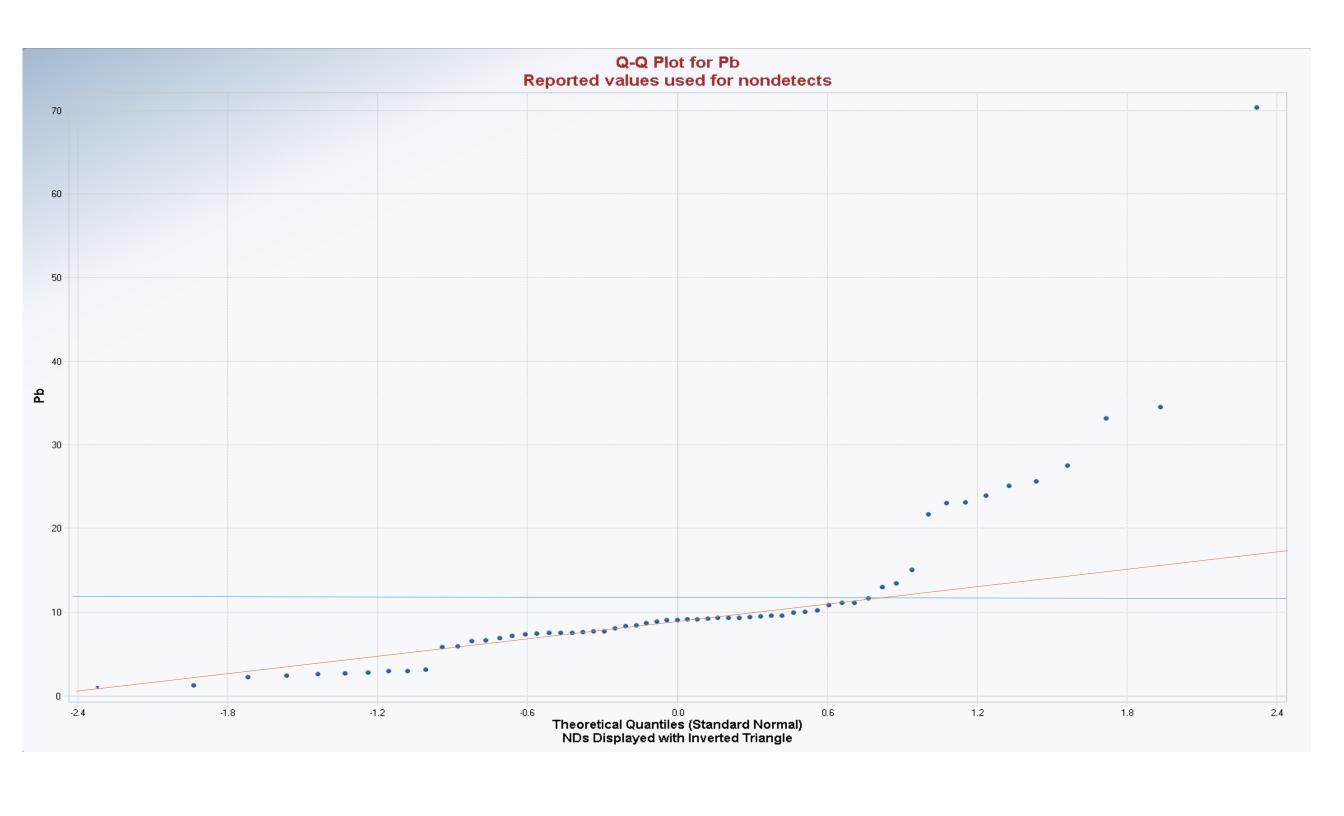


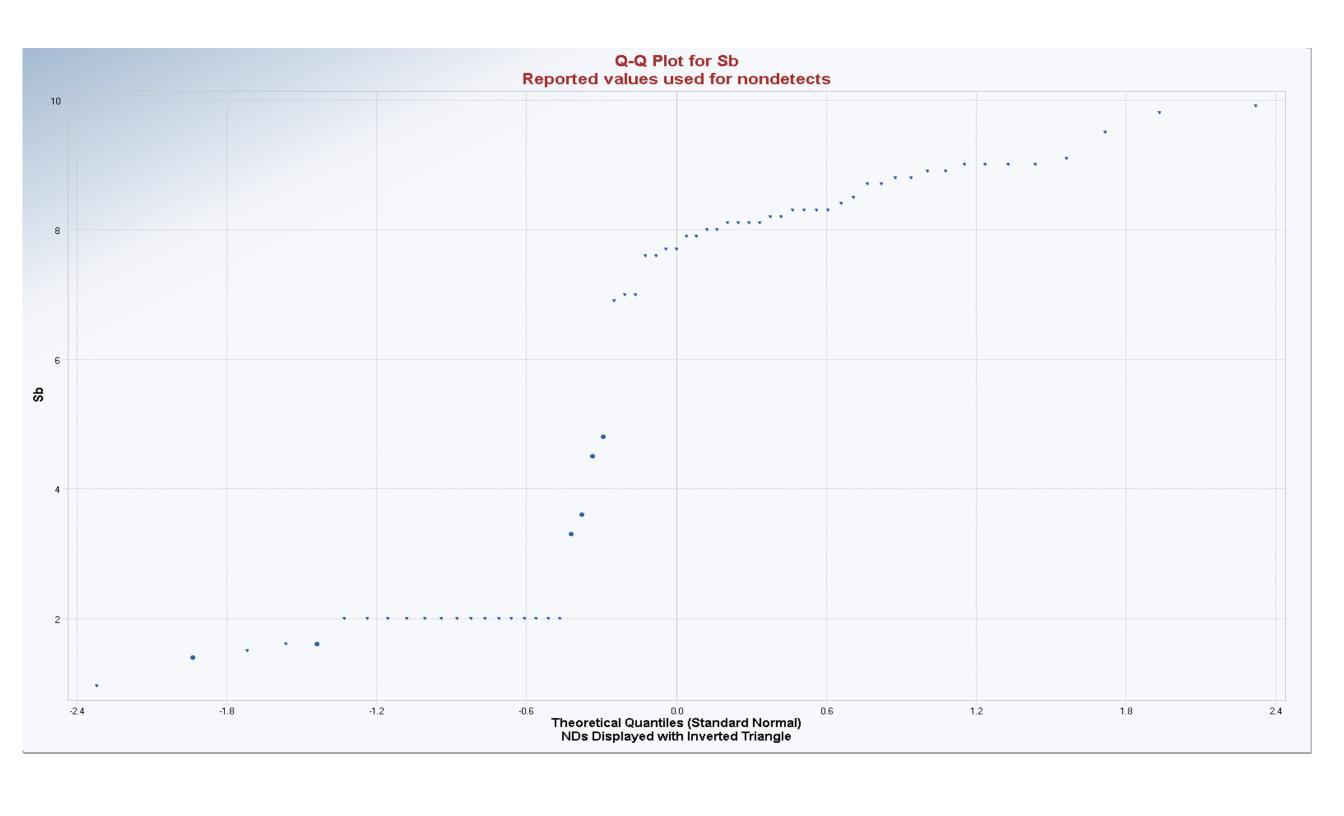


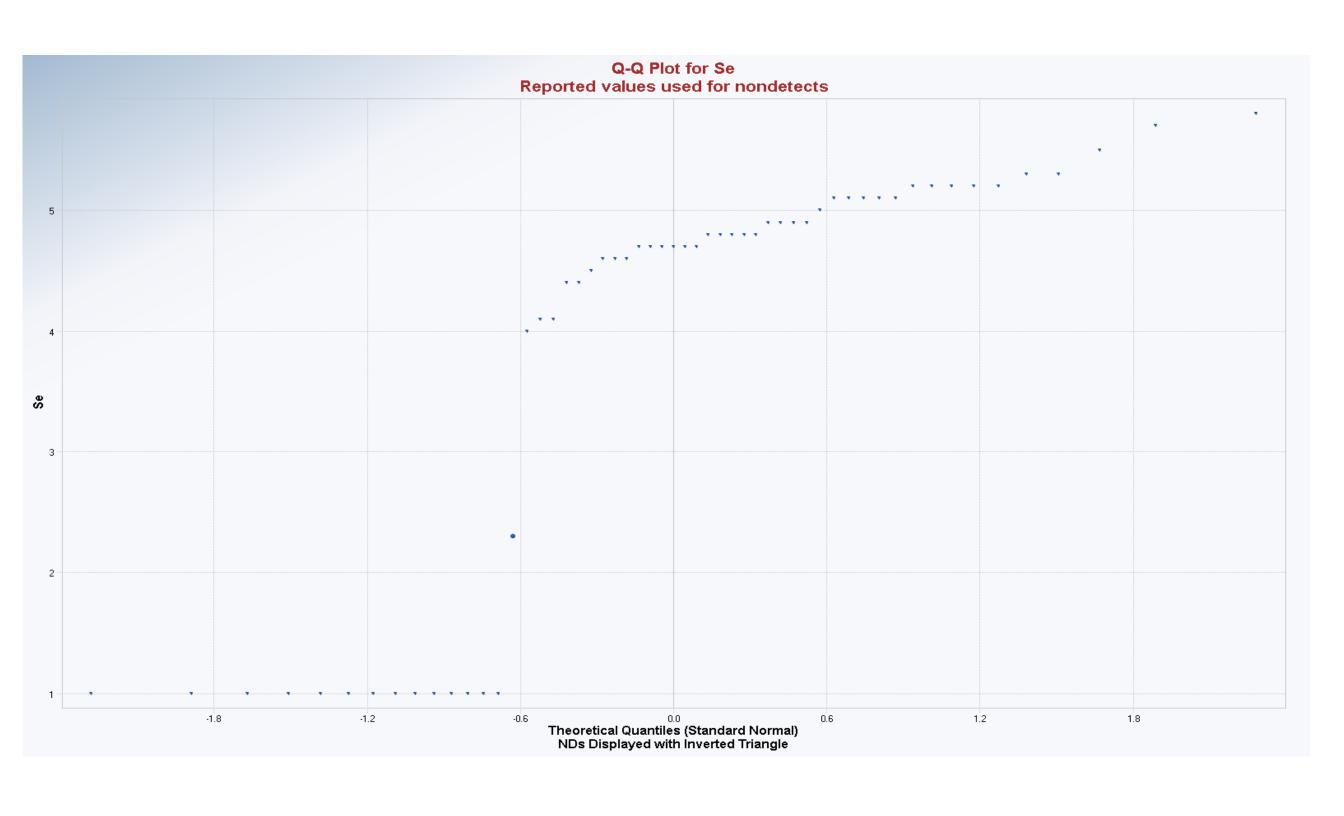


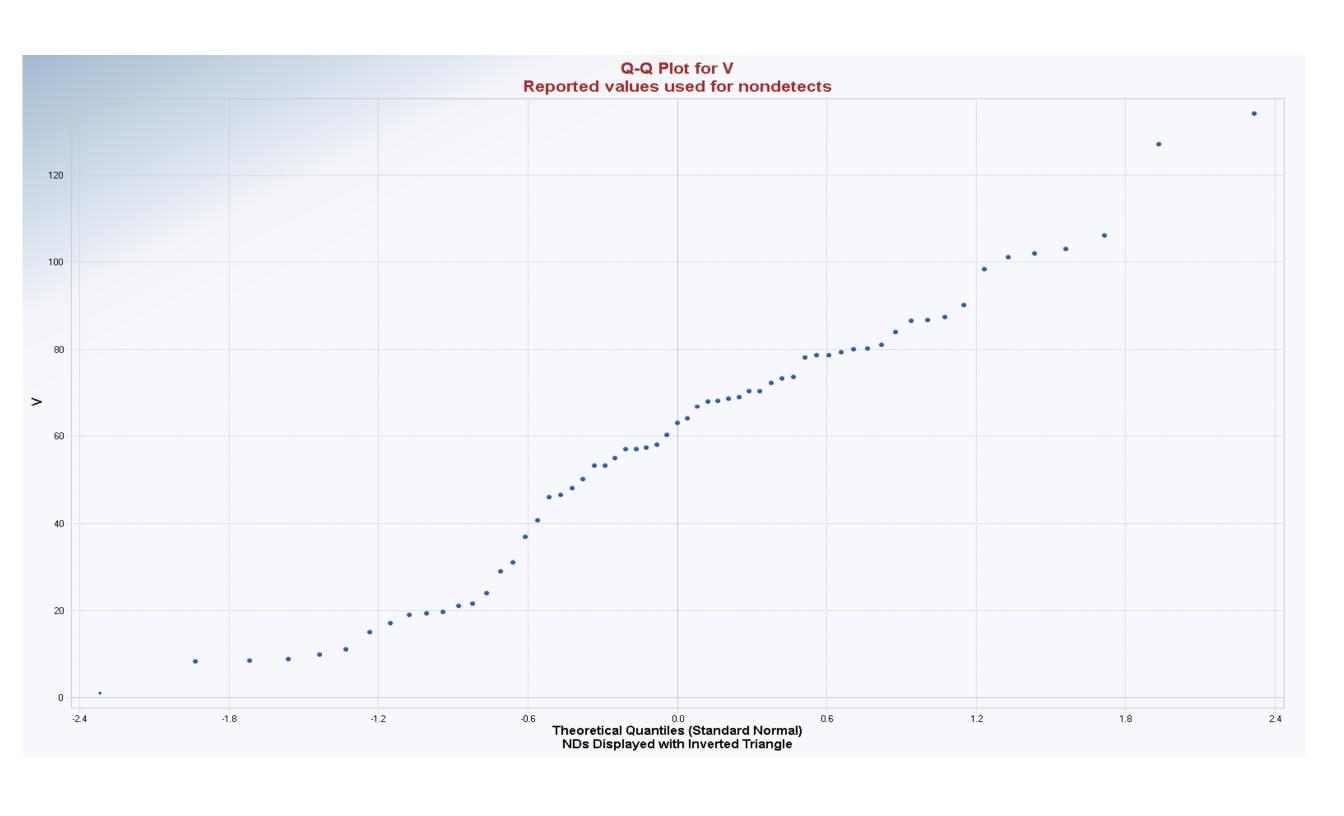


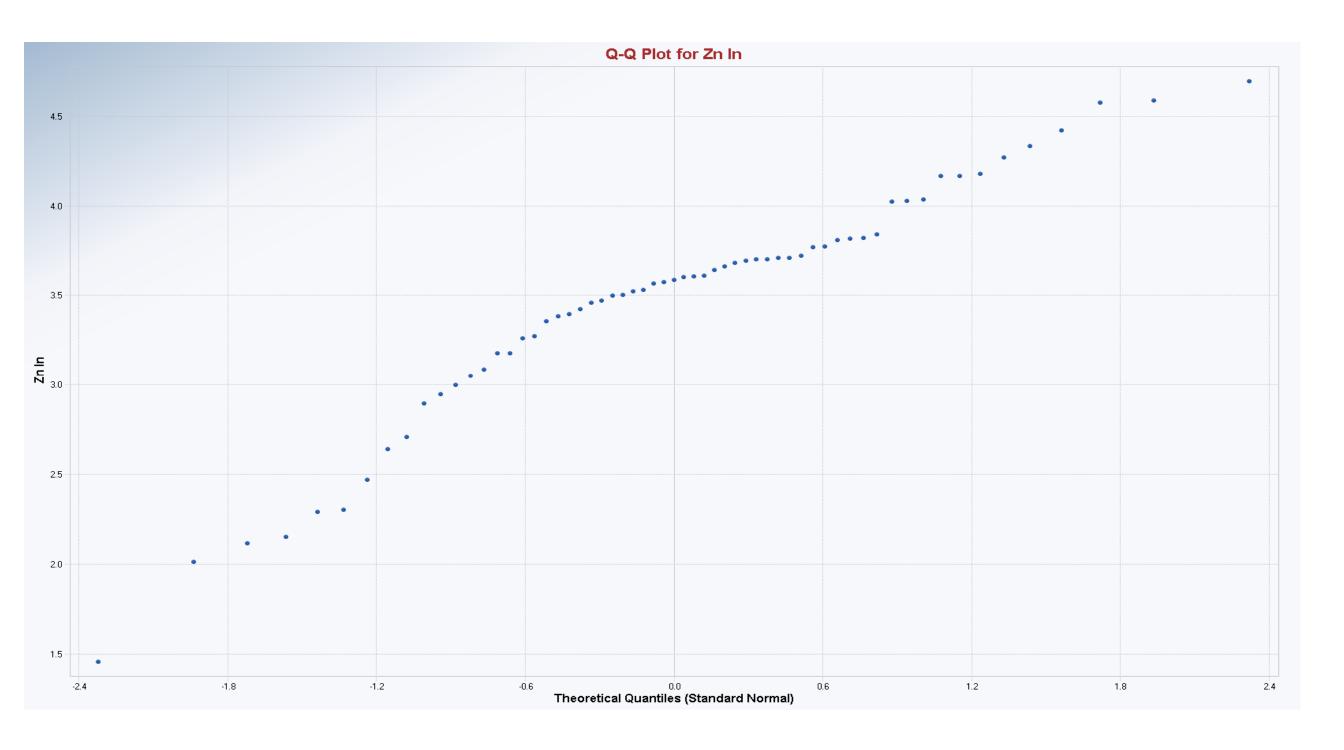












	A B C	D E	F atistics for Data	G Sets with No	H on-Detects	I	J	K	L
1									
3	User Selected Option	s							
4	Date/Time of Computation	ProUCL 5.12/28/2018	3 10:00:40 AM						
5	From File	5034.01 Metals Data	xls						
6	Full Precision	OFF							
7	Confidence Coefficient	95%							
8	Number of Bootstrap Operations	2000							
9									
10	Sb								
11									
12			General	Statistics					
13	Tota	I Number of Observation	ons 61			Numbe	er of Distinct	Observations	28
14		Number of Dete	cts 6				Number of	Non-Detects	55
15	N	Number of Distinct Dete	cts 6			Numb	er of Distinct	Non-Detects	23
16		Minimum Det	ect 1.4				Minimun	n Non-Detect	0.96
17		Maximum Det	ect 4.8				Maximun	n Non-Detect	9.9
18		Variance Dete	cts 2.044				Percent	Non-Detects	90.16%
19		Mean Dete	cts 3.2					SD Detects	1.43
20		Median Dete	cts 3.45					CV Detects	0.447
21		Skewness Dete	cts -0.366				Kur	tosis Detects	-1.812
22		Mean of Logged Dete	cts 1.059				SD of Lo	gged Detects	0.528
23									
24		N	ormal GOF Tes	t on Detects	Only				
25	(Shapiro Wilk Test Stati	stic 0.896			Shapiro W	ilk GOF Test		
26	5% \$	5% Shapiro Wilk Critical Val				a appear No	rmal at 5% Si	gnificance Lev	vel
27		Lilliefors Test Statis	stic 0.202			Lilliefors	GOF Test		
28	!	5% Lilliefors Critical Va	lue 0.325	De	etected Data	a appear No	rmal at 5% Si	gnificance Lev	vel
29		Detected Da	ta appear Norn	nal at 5% Sigi	nificance Le	evel			
30									
31	Kaplan	-Meier (KM) Statistics u	sing Normal C	itical Values	and other N	Nonparametr	ic UCLs		
32		KM Me	ean 1.728			K	M Standard E	Error of Mean	0.273
33		KM	SD 1.094				95% KN	M (BCA) UCL	2.229
34		95% KM (t) U	CL 2.185			95% KM (Percentile Bo	otstrap) UCL	2.224
35		95% KM (z) U	CL 2.178				95% KM Bo	otstrap t UCL	2.105
36		90% KM Chebyshev U						ebyshev UCL	2.92
37	9	7.5% KM Chebyshev U	CL 3.435				99% KM Che	ebyshev UCL	4.448
38									
39			OF Tests on De	etected Obse		•	-	-	
40		A-D Test Statis					arling GOF Te		
41		5% A-D Critical Va		Detected				5% Significan	ce Level
42		K-S Test Statis				_	-Smirnov GO		
43		5% K-S Critical Va					Distributed at	5% Significan	ce Level
44		Detected data app	ear Gamma Dis	stributed at 5°	% Significa	nce Level			
45									
46			ma Statistics or	Detected Da	ata Only				
47		k hat (Mi					•	rrected MLE)	2.592
48		Theta hat (M	*			Theta	•	rrected MLE)	1.235
49		nu hat (M	*				nu star (bi	as corrected)	31.1
50		Mean (detec	ets) 3.2						
51									
52		Gamma R	OS Statistics us	sing Imputed	Non-Detec	ts			

53	A B C D E GROS may not be used when data so	F et has > 50%	G 6 NDs with ma	H any tied obs	l servations a	J t multiple DLs	K	L
54	GROS may not be used when kstar of detects is	small such a	s <1.0, especi	ally when t	he sample s	size is small (e	e.g., <15-20)	
55	For such situations, GROS r	method may	yield incorrec	t values of	UCLs and E	STVs		
56	This is especia	ally true whe	n the sample	size is sma	II.			
57	For gamma distributed detected data, BTVs a	ind UCLs ma	y be compute	ed using gar	mma distrib	ution on KM e	stimates	
58	Minimum	0.01	,				Mean	1.234
	Maximum	4.8					Median	1.066
59	SD	1.072					CV	0.868
60	k hat (MLE)	0.798			k	star (bias corr	_	0.77
61	Theta hat (MLE)	1.545				star (bias cori	,	1.602
62	nu hat (MLE)	97.4			111010	nu star (bia		93.95
63	Adjusted Level of Significance (β)	0.0461				Tiu Stai (bia	3 corrected)	
64	Approximate Chi Square Value (93.95, α)	72.59			Adjusted Cl	ni Square Valu	ID (03 05 R)	72.14
65	95% Gamma Approximate UCL (use when n>=50)	1.597				ted UCL (use	` ' '	1.607
66	95% Gamma Approximate OCL (use when n>-50)	1.597		95% Ga	imma Aujus	ted OCL (use	when h<50)	1.007
67	F			NA F-#!				
68	Estimates of Ga		neters using K	.M Estimate	es		05 """	4.004
69	Mean (KM)	1.728					SD (KM)	1.094
70	Variance (KM)	1.198				SE of	Mean (KM)	0.273
71	k hat (KM)	2.494					k star (KM)	2.383
72	nu hat (KM)	304.3				r	nu star (KM)	290.7
73	theta hat (KM)	0.693					ta star (KM)	0.725
74	80% gamma percentile (KM)	2.534			90	% gamma per	centile (KM)	3.228
75	95% gamma percentile (KM)	3.883			99	% gamma per	centile (KM)	5.321
76	,						<u>'</u>	
77	Gamm	a Kaplan-Me	eier (KM) Stati	stics				
78	Approximate Chi Square Value (290.68, α)	252.2		А	djusted Chi	Square Value	(290.68, β)	251.3
79	95% Gamma Approximate KM-UCL (use when n>=50)	1.992	9	5% Gamm	a Adjusted	KM-UCL (use	when n<50)	1.999
80								
81	Lognormal GO	F Test on De	etected Obser	vations Onl	ly			
82	Shapiro Wilk Test Statistic	0.852			Shapiro W	ilk GOF Test		
83	5% Shapiro Wilk Critical Value	0.788	Detec	ted Data a	ppear Logn	ormal at 5% S	ignificance L	evel
84	Lilliefors Test Statistic	0.267			Lilliefors	GOF Test		
85	5% Lilliefors Critical Value	0.325	Detec	cted Data a	ppear Logn	ormal at 5% S	ignificance L	evel
86	Detected Data ap	pear Lognon						
	·							
87	Lognormal ROS	S Statistics U	Ising Imputed	Non-Detec	ts			
88	Mean in Original Scale	1.456	• •			Mean i	n Log Scale	0.239
89	SD in Original Scale	0.866					n Log Scale	0.515
90	95% t UCL (assumes normality of ROS data)	1.642			95%	Percentile Bo		1.644
91	95% BCA Bootstrap UCL	1.665			33 70		tstrap t UCL	1.69
92	95% H-UCL (Log ROS)	1.642				30 /0 000	ap : 00L	
93	33 % 11-00L (L0g NO3)	1.072						
94	Statistica uning VM estimates a	n Logged D	ata and Assum	ning Loans	rmal Distrib	ution		
95	Statistics using KM estimates of		ala anu ASSUF	imiy Logno	ııılaı DISTIİD		1 Cos M	1 504
96	KM SD (James I)	0.408			0501		1 Geo Mean	1.504
97	KM SD (logged)	0.483			95%	Critical H Valu	, ,,	1.85
98	KM Standard Error of Mean (logged)	0.148			050		L (KM -Log)	1.896
99	KM SD (logged)	0.483			95%	Critical H Valu	ıe (KM-Log)	1.85
100	KM Standard Error of Mean (logged)	0.148						
101								
102		DL/2 St	atistics					
103	DL/2 Normal				DL/2 Log-	Transformed		
104	Mean in Original Scale	3.129				Mean i	n Log Scale	0.949
							1	

105	Α	В	С	D SD in C	E Original Scale	F 1.537	G	Н		1	J	K SD in Log Scal	L e 0.7
105			95% t l		es normality)	3.458						95% H-Stat UC	
106				,	mmended met		ed for compa	arisons an	d histori	ical rea			
107 108							•						
109					Nonparamet	ric Distribut	ion Free UCI	L Statistics	S				
110				Detected	d Data appear	Normal Dis	tributed at 59	% Significa	ance Le	vel			
111													
112						Suggested	UCL to Use						
113				95%	6 KM (t) UCL	2.185							
114													-
115	1	Note: Sugge	estions regard	ding the sele	ction of a 95%	UCL are pr	ovided to he	lp the use	r to sele	ct the i	nost app	ropriate 95% U	CL.
116			F	Recommenda	ations are bas	ed upon dat	ta size, data	distributio	n, and s	kewne	SS.		
117		These reco	mmendation	s are based	upon the resul	ts of the sin	nulation studi	ies summa	arized ir	n Singh	, Maichle	e, and Lee (200	i).
118	Но	wever, simu	ılations resul	ts will not co	ver all Real W	orld data se	ts; for additio	nal insigh	t the us	er may	want to	consult a statist	cian.
119													
120	As												
121													
122						General	Statistics						
123			Total		Observations	61			l	Numbe		nct Observation	
124					er of Detects	37						r of Non-Detect	
125			N		stinct Detects	22				Numbe		inct Non-Detect	
126					imum Detect	0.97						mum Non-Detec	
127					imum Detect	8						num Non-Detec	
128					ance Detects	2.289					Perc	ent Non-Detect	
129					Mean Detects	2.91						SD Detect	
130					dian Detects	2.7						CV Detect	
131					ness Detects	1.754						Kurtosis Detect	
132				Mean of Log	gged Detects	0.955					SD 01	Logged Detect	s 0.479
133					Norma	ol GOE Too	t on Detects	Only					
134			<u> </u>	Shanira Wilk	Test Statistic	0.842	l on Detects	Offig	Sha	niro Wi	Ik GOF T	oct	
135				•	Critical Value	0.842	Г	Detected F		=		Significance Le	امر
136			370 0		Test Statistic	0.330		Detected L			GOF Tes		
137			5		Critical Value	0.144	Г	Detected F				Significance Le	vel .
138					Detected Data						ui ui 0 70		
139							at 0 /0 Olgim						
140			Kaplan-	Meier (KM) S	Statistics using	Normal Cr	itical Values	and other	Nonpar	ametri	: UCLs		
141				,	KM Mean	2.135						ard Error of Mea	n 0.205
142					KM SD	1.539						6 KM (BCA) UC	
143 144				95%	6 KM (t) UCL	2.477			95%	6 KM (F	Percentile	Bootstrap) UC	L 2.485
145				95%	KM (z) UCL	2.472					95% KM	Bootstrap t UC	L 2.522
146					ebyshev UCL	2.75					95% KM	Chebyshev UC	L 3.029
147			97	7.5% KM Che	ebyshev UCL	3.416				!	99% KM	Chebyshev UC	L 4.176
148							<u> </u>						
149				(Gamma GOF	Tests on De	tected Obse	rvations O	nly				
150				A-D	Test Statistic	0.519			Anders	son-Da	rling GOI	- Test	
151				5% A-D (Critical Value	0.751	Detected	d data app	ear Ga	mma D	istributed	d at 5% Significa	nce Level
152				K-S	Test Statistic	0.125			Kolmo	gorov-	Smirnov	GOF	
153				5% K-S (Critical Value	0.145	Detected	d data app	ear Ga	mma D	istributed	d at 5% Significa	nce Level
154				Detected	data appear	Gamma Dis	tributed at 5°	% Significa	ance Le	vel			
155													
156					Gamma S	Statistics on	Detected Da	ata Only					

157	A B C D E k hat (MLE)	F 4.584	G	Н	I J K k star (bias corrected MLE)	L 4.23			
158	Theta hat (MLE)				Theta star (bias corrected MLE)	0.688			
159	nu hat (MLE)	339.2			nu star (bias corrected)	313			
160	Mean (detects)	2.91							
161									
162	Gamma ROS	Statistics u	sing Imputed I	Non-Detect	s				
163	GROS may not be used when data s	set has > 50	% NDs with m	any tied ob	servations at multiple DLs				
164	GROS may not be used when kstar of detects is	small such	as <1.0, espec	ially when	the sample size is small (e.g., <15-20)				
165	For such situations, GROS	method ma	y yield incorred	ct values of	UCLs and BTVs				
166	This is espec	cially true wh	en the sample	size is sma	all.				
167	For gamma distributed detected data, BTVs	and UCLs m	nay be comput	ed using ga	amma distribution on KM estimates				
168	Minimum	0.01			Mean	1.992			
169	Maximum	8			Median	1.7			
170	SD	1.667			CV	0.837			
171	k hat (MLE)	0.944			k star (bias corrected MLE)	0.909			
172	Theta hat (MLE)	2.11			Theta star (bias corrected MLE)	2.192			
173	nu hat (MLE)	115.2			nu star (bias corrected)	110.9			
174	Adjusted Level of Significance (β)	0.0461							
175	Approximate Chi Square Value (110.86, α)	87.56		,	Adjusted Chi Square Value (110.86, β)	87.06			
176	95% Gamma Approximate UCL (use when n>=50)	2.522		95% G	amma Adjusted UCL (use when n<50)	2.537			
177									
178	Estimates of G	amma Para	meters using l	KM Estimat	es				
179	Mean (KM)	2.135			SD (KM)	1.539			
180	Variance (KM)	2.369			SE of Mean (KM)	0.205			
181	k hat (KM)	1.923			k star (KM)	1.84			
182	nu hat (KM)	234.7		nu star (KM)					
183	theta hat (KM)	1.11		theta star (KM)					
184	80% gamma percentile (KM)	3.227		90% gamma percentile (KM)					
185	95% gamma percentile (KM)	5.2			99% gamma percentile (KM)	7.352			
186									
187	Gamn	na Kaplan-M	leier (KM) Stat	tistics					
188	Approximate Chi Square Value (224.46, α)) 190.8		,	Adjusted Chi Square Value (224.46, β)	190			
189	95% Gamma Approximate KM-UCL (use when n>=50)	2.511	!	95% Gamn	na Adjusted KM-UCL (use when n<50)	2.521			
190									
191	Lognormal GC	OF Test on D	Detected Obse	rvations Or	nly				
192	Shapiro Wilk Test Statistic	0.967			Shapiro Wilk GOF Test				
193	5% Shapiro Wilk Critical Value	0.936	Dete	cted Data a	appear Lognormal at 5% Significance Le	evel			
194	Lilliefors Test Statistic	0.105			Lilliefors GOF Test				
195	5% Lilliefors Critical Value	0.144	Dete	cted Data a	appear Lognormal at 5% Significance Le	evel			
196	Detected Data ap	ppear Logno	ormal at 5% Sig	gnificance L	_evel				
197									
198	Lognormal RO		Using Imputed	Non-Dete					
199	Mean in Original Scale	2.177			Mean in Log Scale	0.583			
200	SD in Original Scale	1.499			SD in Log Scale	0.621			
201	95% t UCL (assumes normality of ROS data)	2.497			95% Percentile Bootstrap UCL	2.496			
202	95% BCA Bootstrap UCL				95% Bootstrap t UCL	2.574			
203	95% H-UCL (Log ROS)	2.537							
204		•	•						
205	Statistics using KM estimates	on Logged I	Data and Assu	ming Logno	ormal Distribution				
206	KM Mean (logged)	0.514			KM Geo Mean	1.673			
207	KM SD (logged)	0.712			95% Critical H Value (KM-Log)	2.014			
208	KM Standard Error of Mean (logged)	0.104			95% H-UCL (KM -Log)	2.593			
		ì	1						

000	A B C D KM SD (I	E loaaed)	F 0.712	G	Н	I J K 95% Critical H Value (KM-Log)	L 2.014		
209	KM Standard Error of Mean (0.104			· · · · · · · ·			
211		,							
212			DL/2 St	atistics					
213	DL/2 Normal					DL/2 Log-Transformed			
214	Mean in Origina	al Scale	2.089			Mean in Log Scale	0.462		
215	SD in Origina	al Scale	1.575			SD in Log Scale	0.78		
216	95% t UCL (Assumes no	rmality)	2.426			95% H-Stat UCL	2.649		
217	DL/2 is not a recommer	nded me	thod, provid	ed for compa	risons and h	nistorical reasons			
218									
219		•		ion Free UCL					
220	Detected Data	appear	Gamma Dis	tributed at 59	% Significan	ce Level			
221									
222			Suggested	UCL to Use					
223	95% KM Approximate Gamn	na UCL	2.511		9:	5% GROS Approximate Gamma UCL	2.522		
224	N		. LICI	.,					
225	Note: Suggestions regarding the selection of				•				
226	Recommendations		•						
227	These recommendations are based upon					. ,			
228	However, simulations results will not cover all	ı Keal W	oriu data se	is; for additio	nai insight ti	ne user may want to consult a statistica	dII.		
229	Ba								
230	Ба								
231			General	Statietice					
232	Total Number of Obser	vations	61	Statistics		Number of Distinct Observations	54		
233	Number of I		60			Number of Non-Detects	1		
234	Number of Distinct I		53			Number of Distinct Non-Detects	1		
235	Minimum		5.5			Minimum Non-Detect	18.3		
236 237	Maximum	Detect	610			Maximum Non-Detect	18.3		
238	Variance I	Detects	14692			Percent Non-Detects	1.639%		
239	Mean I	Detects	165.6			SD Detects	121.2		
240	Median I	Detects	137.5			CV Detects	0.732		
241	Skewness I	Detects	1.261			Kurtosis Detects	2.109		
242	Mean of Logged	Detects	4.779			SD of Logged Detects	0.945		
243						I			
244		Norm	al GOF Test	on Detects	Only				
245	Shapiro Wilk Test S	Statistic	0.901	١	Normal GOF	Test on Detected Observations Only			
246	5% Shapiro Wilk F		4.4060E-5	Γ	Detected Date	ta Not Normal at 5% Significance Level	ı		
247	Lilliefors Test S		0.148			Lilliefors GOF Test			
248	5% Lilliefors Critica		0.114			ta Not Normal at 5% Significance Leve	l		
249	Detect	ted Data	Not Normal	at 5% Signif	icance Leve	·			
250									
251	Kaplan-Meier (KM) Statist	-		tical Values	and other No				
252		M Mean	163.1			KM Standard Error of Mean	15.6 189		
253		KM SD	120.8	` '					
254	95% KM		189.1						
255	95% KM (` '	188.7			95% KM Bootstrap t UCL	191.6		
256	90% KM Chebysh		209.9			95% KM Chebyshev UCL	231.1		
257	97.5% KM Chebysh	ev UCL	260.5			99% KM Chebyshev UCL	318.3		
258	<u> </u>	20 COE	Toote en D-	tootod Observ	votions Ort	,			
259		,	0.79	tected Obser	•	nderson-Darling GOF Test			
260	A-D Test S	วเสแรนต	0.79		A	inderson-paining GOF 18St			

261	Α	В	С	5% A-D (E Critical Value	F 0.767	G Detected	H I Data N	I lot Gamma [J Distributed at 5%	K 6 Significance	L e Level
262				K-S	Test Statistic	0.145			Kolmogoro	v-Smirnov GOI	=	
263				5% K-S	Critical Value	0.117	Detected	l Data N	lot Gamma [Distributed at 5%	6 Significance	Level
264				Detect	ed Data Not (⊥ Gamma Dist	ributed at 5% S	ignificar	nce Level			
265												
266					Gamma	Statistics or	n Detected Data	Only				
267					k hat (MLE)	1.658				k star (bias cor	rected MLE)	1.586
268				The	eta hat (MLE)	99.9			The	ta star (bias cor	rected MLE)	104.4
269					nu hat (MLE)	198.9				nu star (bia	s corrected)	190.3
270				M	ean (detects)	165.6						
271						1						
272				(Gamma ROS	Statistics us	sing Imputed No	on-Dete	cts			
273			GROS may	not be used	d when data s	set has > 50°	% NDs with mar	ny tied c	observations	at multiple DLs	i	
274		GROS ma	y not be used	d when kstar	of detects is	small such a	as <1.0, especia	ally whe	n the sample	e size is small (e	e.g., <15-20)	
275			Fo	or such situa	tions, GROS	method may	y yield incorrect	values	of UCLs and	BTVs		
276				-	This is espec	ially true who	en the sample s	size is sı	mall.			
277		For ga	mma distribu	ted detected	data, BTVs	and UCLs m	ay be computed	d using	gamma distr	ibution on KM e	estimates	
278					Minimum	5.5					Mean	163.1
279					Maximum	610					Median	137
280					SD	121.7					CV	0.746
281					k hat (MLE)	1.578				k star (bias cor	rected MLE)	1.511
282				The	eta hat (MLE)	103.4			The	ta star (bias cor	rected MLE)	108
283					nu hat (MLE)	192.5				nu star (bia	s corrected)	184.3
284			Adjusted	Level of Sig	gnificance (β)	0.0461						
285		Аррі	roximate Chi	Square Valu	ie (184.33, α)	153.9			Adjusted C	hi Square Valu	e (184.33, β)	153.3
286	9	95% Gamm	a Approximat	te UCL (use	when n>=50)	195.4		95%	Gamma Adjı	usted UCL (use	when n<50)	196.2
287						1						
288				E	stimates of G	amma Para	meters using KI	M Estim	ates			
289					Mean (KM)	163.1					SD (KM)	120.8
290				V	ariance (KM)	14598				SE o	f Mean (KM)	15.6
291					k hat (KM)	1.821					k star (KM)	1.743
292					nu hat (KM)	222.2					nu star (KM)	212.6
293				th	neta hat (KM)	89.52				the	eta star (KM)	93.56
294			809	% gamma pe	rcentile (KM)	248.1			9	0% gamma per	rcentile (KM)	327.7
295			959	% gamma pe	rcentile (KM)	404.2			g	9% gamma pe	centile (KM)	575.5
296											<u> </u>	
297							leier (KM) Statis	stics				
298			roximate Chi	•	,				•	hi Square Valu		179.2
299	95%	Gamma Ap	proximate KI	M-UCL (use	when n>=50)	192.7	9:	5% Gan	nma Adjuste	d KM-UCL (use	when n<50)	193.5
300												
301							etected Observ	ations (
302		S	hapiro Wilk A	• •					-	Wilk GOF Test		
303				•	Wilk P Value		Dete	ected Da		ormal at 5% Siç	gnificance Lev	rel
304					Test Statistic					rs GOF Test		
305			5		Critical Value		0.114 Detected Data Not Lognormal at 5% Significance Level					
306				De	etected Data	Not Lognom	nal at 5% Signif	icance l	Level			
307												
308							Using Imputed I	Non-Det	tects			
309					Original Scale						in Log Scale	4.749
310					riginal Scale						in Log Scale	0.965
311		95% t	UCL (assume						959	% Percentile Bo	·	190.5
312				95% BCA B	ootstrap UCL	192.7				95% Boo	tstrap t UCL	193.5
						•	•				ı.	

040	А	В	С	95% H-UC	E L (Log ROS)	F 242.7	G	Н	I	J	J	K	L
313 314					_ (=-9)								
315			Stati	istics using K	VI estimates	on Logged D	ata and Assu	ming Logno	rmal Distri	bution			
316				KM M	ean (logged)	4.738					KM G	ieo Mean	114.2
317				KM	SD (logged)	0.983			95%	6 Critical	H Value	(KM-Log)	2.24
318			KM Standa	ard Error of M	ean (logged)	0.127				95%	H-UCL (KM -Log)	245.9
319				KM	SD (logged)	0.983			95%	6 Critical	H Value	(KM-Log)	2.24
320			KM Standa	ard Error of M	ean (logged)	0.127							
321						II.	ı					· ·	
322						DL/2 S	tatistics						
323			DL/2	Normal		_			DL/2 Log				
324					riginal Scale					ı		og Scale	4.737
325					riginal Scale							og Scale	0.993
326				UCL (Assum	• •						95% H-	Stat UCL	248.9
327			DL/2	is not a reco	mmended me	ethod, provid	ed for compa	risons and h	nistorical re	easons			
328					NI -	and the second	p . 1161	01-11-11					
329				D-4	•		ion Free UCL						
330				Data do n	ot tollow a Di	scernible Dis	stribution at 5	% Significar	ice Level				
331						Suggested	LICL to Lies						
332			9	5% KM (Che	ovshev) LICI		OCL to ose						
333				570 KW (OHO)	bysnev) dol	201.1							
334	N	lote: Sugge	estions regar	ding the sele	rtion of a 95°	% LICL are nr	ovided to hel	n the user to	n select the	most an	nronriate	95% LICI	
335	.,	toto. ougge		Recommenda				•			ргорпак		
336		These reco									ile. and L	ee (2006).	,
337 338		These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.											
339													
	Be												
341													
342						General	Statistics						
343			Tota	I Number of 0	Observations	61			Numb	per of Dis	tinct Obs	ervations	21
344				Numb	er of Detects	24				Numb	er of No	n-Detects	37
345			N	Number of Dis	tinct Detects	12			Num	ber of Dis	stinct Nor	n-Detects	15
346				Min	imum Detect					Mir	nimum No	on-Detect	0.09
347					imum Detect							on-Detect	1.3
348					ance Detects					Pe		n-Detects	60.66%
349					lean Detects) Detects	0.304
350					dian Detects							/ Detects	0.267
351					ness Detects					CD		s Detects	0.273
352				iviean of Log	ged Detects	0.0847				20	oi Logge	d Detects	0.334
353					Nom	nal GOE Too	t on Detects (Only					
354				Shapiro Wilk			. On Detects (Jilly	Shapiro V	Wilk G∩⊏	Teet		
355				Shapiro Wilk (De	tected Data	· ·			icance I e	vel
356				<u> </u>	Test Statistic			Duid		s GOF To			
357			Į	5% Lilliefors (De	tected Data				icance Le	vel
358 359							al at 5% Sigr				- 3		
					. ===		3-						
360 361			Kaplan-	-Meier (KM) S	Statistics usir	ng Normal Cr	itical Values	and other No	onparamet	ric UCLs			
JULI			•							KM Stand			0.0847
					KM Mean	0.65				tivi Otalic	anu Liio	r of Mean	0.0047
362					KM Mean KM SD				<u>'</u>			r of Mean CA) UCL	0.818
				95%		0.5			95% KM	95	5% KM (B	CA) UCL	

	A B C D E 95% KM (z) UCL	F 0.79	G	Н		I	95% KM Boo	K otstran t UCI	L 0.785		
365	90% KM Chebyshev UCL	0.904					95% KM Che		1.02		
366	97.5% KM Chebyshev UCL						99% KM Che	-	1.493		
367		11110						.,			
368	Gamma GOF	Tests on De	tected Obse	vations O	nlv						
369	A-D Test Statistic					son-Da	rling GOF Te	st			
370	5% A-D Critical Value	0.744	Detected Data Not Gamma Distributed at 5% Significance Level								
371 372	K-S Test Statistic	0.161			Kolmo	ogorov.	-Smirnov GO	 F			
373	5% K-S Critical Value	0.178	Detected	d data app				5% Significan	ce Level		
374	Detected data follow App	or. Gamma D									
375	·	'									
376	Gamma	Statistics on	Detected Da	ata Only							
377	k hat (MLE)	11.22				k	star (bias cor	rected MLE)	9.843		
378	Theta hat (MLE)	0.102				Theta	star (bias cor	rected MLE)	0.116		
379	nu hat (MLE)	538.4					nu star (bia	as corrected)	472.5		
380	Mean (detects)	1.139					<u> </u>				
381	· ,		1								
382	Gamma ROS	Statistics us	sing Imputed	Non-Dete	cts						
383	GROS may not be used when data s					tions a	t multiple DLs	3			
384	GROS may not be used when kstar of detects is	small such a	ıs <1.0, espe	cially whe	n the sa	ample s	size is small (e.g., <15-20)			
385	For such situations, GROS	method may	yield incorre	ct values	of UCL	s and E	BTVs				
386	This is especi	ially true whe	en the sample	e size is sr	mall.						
387	For gamma distributed detected data, BTVs a	and UCLs ma	ay be comput	ted using (gamma	distrib	ution on KM e	estimates			
388	Minimum	0.185						Mean	0.794		
389	Maximum	1.5						Median	0.738		
390	SD	0.362						CV	0.457		
391	k hat (MLE)	4.844				k	star (bias cor	rected MLE)	4.617		
392	Theta hat (MLE)	0.164				Theta	star (bias cor	rected MLE)	0.172		
393	nu hat (MLE)	591					nu star (bia	as corrected)	563.3		
394	Adjusted Level of Significance (β)	0.0461									
395	Approximate Chi Square Value (563.29, α)	509.2			Adjust	ted Chi	Square Valu	e (563.29, β)	508		
396	95% Gamma Approximate UCL (use when n>=50)	0.878		95%	Gamma	a Adjus	ted UCL (use	when n<50)	0.88		
397											
398	Estimates of G	amma Parar	neters using	KM Estima	ates						
399	Mean (KM)							SD (KM)	0.5		
400	Variance (KM)	0.25					SE o	f Mean (KM)	0.0847		
401	k hat (KM)	1.694						k star (KM)	1.621		
402	nu hat (KM)	206.6						nu star (KM)	197.8		
403	theta hat (KM)							eta star (KM)	0.401		
404	80% gamma percentile (KM)						% gamma pe	` '	1.33		
405	95% gamma percentile (KM)	1.651				99	% gamma pe	rcentile (KM)	2.373		
406											
407			eier (KM) Sta	tistics			_				
408	Approximate Chi Square Value (197.78, α)				-		Square Valu		165.5		
409	95% Gamma Approximate KM-UCL (use when n>=50)	0.774		95% Garr	nma Ad	justed	KM-UCL (use	when n<50)	0.777		
410											
411	Lognormal GO		etected Obse	ervations C							
412	Shapiro Wilk Test Statistic						ilk GOF Test				
413	5% Shapiro Wilk Critical Value	0.916	De	etected Da				gnificance Lev	/el		
414	Lilliefors Test Statistic	0.179	_	=			GOF Test				
415	5% Lilliefors Critical Value					Lognor	mal at 5% Sig	gnificance Lev	/el		
416	Detected Data I	Not Lognorm	al at 5% Sigr	nificance L	_evel						

	A B C D E	F	G H	l	J K	L							
417	Lognormal DOS	S Statistics !	leina Imputad Nas Da	tecte									
418	Lognormal ROs Mean in Original Scale		Ising Imputed Non-De	ICCIS	Mean in Log Scale	-0.329							
419	SD in Original Scale	0.791			SD in Log Scale								
420	95% t UCL (assumes normality of ROS data)	0.355		050/ Da	ercentile Bootstrap UCL								
421	95% t OCL (assumes normality of NOS data) 95% BCA Bootstrap UCL	0.868		95 % F6	95% Bootstrap t UCL								
422	95% H-UCL (Log ROS)				95 % Bootstrap t OCL	0.074							
423	93 % 11-00L (L0g NO3)	0.877											
424	Statistics using KM estimates of	on Logged D	ata and Assuming Loc	normal Distributi	on								
425	KM Mean (logged)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	KM Geo Mean	0.396							
426	KM SD (logged)			95% Cr	itical H Value (KM-Log)								
427 428	KM Standard Error of Mean (logged)				95% H-UCL (KM -Log)								
429	KM SD (logged)	1.137		95% Cr	itical H Value (KM-Log)	2.293							
430	KM Standard Error of Mean (logged)	0.235											
431													
431		DL/2 St	atistics										
433	DL/2 Normal			DL/2 Log-Tra	ansformed								
434	Mean in Original Scale	0.718			Mean in Log Scale	-0.526							
435	SD in Original Scale	0.406			SD in Log Scale	0.708							
436	95% t UCL (Assumes normality)	0.805			95% H-Stat UCL	0.912							
437	DL/2 is not a recommended me	thod, provid	ed for comparisons an	nd historical reaso	ons	<u> </u>							
438													
439	Nonparametric Distribution Free UCL Statistics												
440	Detected Data appear Normal Distributed at 5% Significance Level												
441		_											
442		Suggested	UCL to Use										
443	95% KM (t) UCL	0.792											
444	Nata Commentions III de la commentación de la comme	/ 1101											
445	Note: Suggestions regarding the selection of a 95%					·L.							
446	Recommendations are based upon the resu					\							
447	However, simulations results will not cover all Real W			•	•								
448	However, Simulations results will not cover all Real W	onu uata se	w, ioi additional msign	it tile usei Illay W	ant to consult a statistic	Juli.							
449	Cd												
430													
451		General	Statistics										
452 453	Total Number of Observations	55		Number o	of Distinct Observations	30							
454	Number of Detects	38		1	Number of Non-Detects	17							
454	Number of Distinct Detects	28		Number	of Distinct Non-Detects	3							
456	Minimum Detect	0.15			Minimum Non-Detect	0.57							
457	Maximum Detect	0.93			Maximum Non-Detect	1							
458	Variance Detects	0.0331			Percent Non-Detects	30.91%							
459	Mean Detects	0.425			SD Detects	0.182							
460	Median Detects	0.385			CV Detects	0.428							
461	Skewness Detects	0.809			Kurtosis Detects	0.528							
462	Mean of Logged Detects	-0.945			SD of Logged Detects	0.434							
463													
464	Nom	al GOF Test	on Detects Only										
465	Shapiro Wilk Test Statistic	0.943		Shapiro Wilk									
466	5% Shapiro Wilk Critical Value	0.938	Detected Da		al at 5% Significance Le	evel							
467	Lilliefors Test Statistic	0.119		Lilliefors G	OF Test								
468	5% Lilliefors Critical Value	0.142	Detected Da	ata appear Norma	al at 5% Significance Le	evel							

160	A B C D E Detected Data a	F ppear Norm	G al at 5% Sign	H nificance Le	vel	J	K		L		
469 470		•									
471	Kaplan-Meier (KM) Statistics using	Normal Cri	itical Values a	and other N	onparamet	tric UCLs					
472	KM Mean	0.422				KM Standard	Error of I	Mean	0.0288		
473	KM SD	0.178				95% k	(M (BCA)	UCL	0.465		
474	95% KM (t) UCL	0.47			95% KM	(Percentile E	ootstrap)	UCL	0.469		
475	95% KM (z) UCL	0.469				95% KM B	ootstrap t	UCL	0.475		
476	90% KM Chebyshev UCL	0.508				95% KM CI	nebyshev	UCL	0.547		
477	97.5% KM Chebyshev UCL	0.601				99% KM CI	nebyshev	UCL	0.708		
478											
479	Gamma GOF	Tests on De	tected Obser	vations Onl	у						
480	A-D Test Statistic	0.234		Α	nderson-D	arling GOF	est				
481	5% A-D Critical Value	0.75	Detected	d data appea	ar Gamma	Distributed a	t 5% Sigr	nifican	ce Level		
482	K-S Test Statistic	0.0818		I	Kolmogoro	v-Smirnov G	OF				
483	5% K-S Critical Value	0.143	Detected	d data appea	ar Gamma	Distributed a	t 5% Sigr	nifican	ce Level		
484	Detected data appear	Gamma Dis	tributed at 5%	% Significan	ce Level						
485											
486		Statistics on	Detected Da	ta Only							
487	k hat (MLE)	5.755				k star (bias c	orrected	MLE)	5.318		
488	Theta hat (MLE)	0.0739			Thet	a star (bias c	orrected	MLE)	0.0799		
489	nu hat (MLE)	437.4				nu star (l	ias corre	cted)	404.2		
490	Mean (detects) 0.425										
491			I								
492	Gamma ROS	Statistics us	ing Imputed I	Non-Detects	s						
493	CDOS may not be used when date get her > 50% NDs with many tied cheangetings at multiple DLs										
494	CDOC may not be used when letter of detects is small such as < 1.0 conscielly when the complexity is small (a.g. <15.20)										
495	For such situations, GROS method may yield incorrect values of UCLs and BTVs										
496	This is especia	-	_								
497	For gamma distributed detected data, BTVs a	nd UCLs ma	y be comput	ed using ga	ımma distri	bution on KM	l estimate	es			
498	Minimum	0.15					1	Mean	0.42		
499	Maximum	0.93					Me	edian	0.37		
500	SD	0.172						CV	0.41		
501	k hat (MLE)	6.233				k star (bias c		,	5.905		
502	Theta hat (MLE)	0.0674			Thet	a star (bias c			0.0711		
503	nu hat (MLE)	685.6				nu star (l	oias corre	cted)	649.5		
504	Adjusted Level of Significance (β)	0.0456									
505	Approximate Chi Square Value (649.52, α)	591.4			•	hi Square Va	•		589.9		
506	95% Gamma Approximate UCL (use when n>=50)	0.461		95% Ga	amma Adju	usted UCL (u	se when r	า<50)	0.462		
507											
508	Estimates of Ga		neters using l	KM Estimate	es						
509	Mean (KM)	0.422						(KM)	0.178		
510	Variance (KM)	0.0315				SE	of Mean	` ′	0.0288		
511	k hat (KM)	5.637					k star	` ′	5.341		
512	nu hat (KM)	620					nu star		587.6		
513	theta hat (KM)	0.0748					heta star	,	0.0789		
514	80% gamma percentile (KM)	0.563					` ′	0.666			
515	95% gamma percentile (KM)	0.76			9	9% gamma p	ercentile	(KM)	0.957		
516											
517		•	eier (KM) Stat								
518	Approximate Chi Square Value (587.56, α)	532.3			•	hi Square Va	•	. ,	530.9		
519	95% Gamma Approximate KM-UCL (use when n>=50)	0.465		95% Gamm	na Adjusted	d KM-UCL (u	se when r	า<50)	0.467		
520											
-			 _			 _					

F01	A B C D E Lognormal GO	F F Test on De	G H I J K Letected Observations Only	L
521 522	Shapiro Wilk Test Statistic	0.981	Shapiro Wilk GOF Test	
523	5% Shapiro Wilk Critical Value	0.938	Detected Data appear Lognormal at 5% Significance Lev	/el
	Lilliefors Test Statistic	0.0978	Lilliefors GOF Test	
524 525	5% Lilliefors Critical Value	0.142	Detected Data appear Lognormal at 5% Significance Lev	/el
526	Detected Data ap	pear Lognorr	mal at 5% Significance Level	
	·		•	
527 528	Lognormal ROS	S Statistics U	sing Imputed Non-Detects	
529	Mean in Original Scale	0.419	Mean in Log Scale	-0.952
530	SD in Original Scale	0.173	SD in Log Scale	0.412
531	95% t UCL (assumes normality of ROS data)	0.458	95% Percentile Bootstrap UCL	0.458
532	95% BCA Bootstrap UCL	0.462	95% Bootstrap t UCL	0.462
533	95% H-UCL (Log ROS)	0.465		
534			<u> </u>	
535	Statistics using KM estimates of	on Logged Da	ata and Assuming Lognormal Distribution	
536	KM Mean (logged)		KM Geo Mean	0.386
537	KM SD (logged)		95% Critical H Value (KM-Log)	1.839
538	KM Standard Error of Mean (logged)		95% H-UCL (KM -Log)	0.47
539	KM SD (logged)	0.426	95% Critical H Value (KM-Log)	1.839
540	KM Standard Error of Mean (logged)	0.0695		
541		1		
542		DL/2 Sta	atistics	
543	DL/2 Normal		DL/2 Log-Transformed	
544	Mean in Original Scale	0.44	Mean in Log Scale	-0.887
545	SD in Original Scale	0.157	SD in Log Scale	0.383
546	95% t UCL (Assumes normality)	0.476	95% H-Stat UCL	0.486
547	DL/2 is not a recommended me	ethod, provide	ed for comparisons and historical reasons	
548				
549	Nonparame	tric Distributi	on Free UCL Statistics	
550	Detected Data appear	r Normal Dist	ributed at 5% Significance Level	
551				
552		Suggested U	JCL to Use	
553	95% KM (t) UCL	0.47		
554		<u> </u>		
555	Note: Suggestions regarding the selection of a 95%	6 UCL are pro	ovided to help the user to select the most appropriate 95% UCL.	
556	Recommendations are based	sed upon data	a size, data distribution, and skewness.	
557			ulation studies summarized in Singh, Maichle, and Lee (2006).	
558	However, simulations results will not cover all Real W	orld data set	s; for additional insight the user may want to consult a statisticiar	۱.
559				
560	Cr			
561				
562		General S		
563	Total Number of Observations		Number of Distinct Observations	57
564	Number of Detects		Number of Non-Detects	1
565	Number of Distinct Detects		Number of Distinct Non-Detects	1
		2.2	Minimum Non-Detect	1
566	Minimum Detect			
566 567	Maximum Detect	80.5	Maximum Non-Detect	1
	Maximum Detect Variance Detects	80.5 303.3	Percent Non-Detects	1.639%
567	Maximum Detect Variance Detects Mean Detects	80.5 303.3 29.17	Percent Non-Detects SD Detects	1.639% 17.41
567 568	Maximum Detect Variance Detects Mean Detects Median Detects	80.5 303.3 29.17 28.6	Percent Non-Detects SD Detects CV Detects	1.639% 17.41 0.597
567 568 569	Maximum Detect Variance Detects Mean Detects	80.5 303.3 29.17 28.6 0.79	Percent Non-Detects SD Detects	1.639% 17.41

	A B C	D E	F	G	Н	l	J K	L
573		Nor	nol COE Tool	t on Detects O)nh/			
574	Shaniro	Wilk Test Statistic				est on De	tected Observations Only	
575	· ·	napiro Wilk P Value					al at 5% Significance Lev	
576		efors Test Statistic		D.			GOF Test	
577		efors Critical Value		D	etected Data I		al at 5% Significance Lev	<u>el</u>
578	070 Ellik			at 5% Signific			ar at 0 % organicance Ecv	
579		20.00.00 20.		at 0 /0 Olgiliii.				
580	Kaplan-Meier	(KM) Statistics usi	ng Normal Cr	itical Values a	nd other Nonr	parametri	c UCLs	
581 582		KM Mear	·				M Standard Error of Mear	2.259
583		KM SD	17.5				95% KM (BCA) UCL	. 32.77
584		95% KM (t) UCL	32.48		9	5% KM (F	Percentile Bootstrap) UCI	. 32.43
585		95% KM (z) UCL	32.42				95% KM Bootstrap t UCL	. 32.77
586	90% K	M Chebyshev UCL	35.48				95% KM Chebyshev UCL	. 38.55
587	97.5% K	M Chebyshev UCL	42.81				99% KM Chebyshev UCL	. 51.18
588								
589		Gamma GOF	Tests on De	tected Observ	ations Only			
590		A-D Test Statistic	1.34		And	erson-Da	rling GOF Test	
591	5%	A-D Critical Value	0.761	Detecte	d Data Not Ga	amma Dis	stributed at 5% Significand	ce Level
592		K-S Test Statistic	0.158		Kol	mogorov-	-Smirnov GOF	
593	5%	K-S Critical Value	0.116	Detecte	d Data Not Ga	amma Dis	stributed at 5% Significand	ce Level
594	С	Detected Data Not	Gamma Distr	ibuted at 5% S	Significance L	evel		
595								
596		Gamma	Statistics on	Detected Dat	a Only			
597		k hat (MLE	2.328			k	star (bias corrected MLE	2.223
598		Theta hat (MLE	12.53			Theta	star (bias corrected MLE	13.12
599		nu hat (MLE					nu star (bias corrected)	266.7
600		Mean (detects)	29.17					
601								
602				ing Imputed N				
603	1	e used when data			•		•	
604	GROS may not be used when							
605	For such	situations, GROS	<u> </u>			CLs and B	STVs	
606				n the sample		11 . 11		
607	For gamma distributed de			y be compute	ed using gamn	na distribi		20.74
608		Minimum					Mear	
609		Maximum SD					Mediar CV	
610		k hat (MLE				ŀ	star (bias corrected MLE	
611		Theta hat (MLE					star (bias corrected MLE	
612		nu hat (MLE				incia	nu star (bias corrected)	
613	Adjusted Level	of Significance (β					na star (bias corrected)	200.7
614	Approximate Chi Square				Adiı	usted Chi	Square Value (253.73, β	217
615	95% Gamma Approximate UCL	•			-		ted UCL (use when n<50	
616	22.5 Gaillia Approximate GGE	. (200	, 33.70			,	002 (000 111011 11 100	, 33.0
617		Estimates of C	amma Paran	neters usina K	(M Estimates			
618		Mean (KM			,		SD (KM)	17.5
619		Variance (KM					SE of Mean (KM	
620		k hat (KM						
621		nu hat (KM		` '				
622		theta hat (KM					theta star (KM)	
623 624	80% gami	ma percentile (KM				909	% gamma percentile (KM	
024	I gu	, (-				5 , ,	

	A B C D E 95% gamma percentile (KM)	F 63.03	G	Н	I J K 99% gamma percentile (KM)	L 85.62
625		00.00			co /o gamma porcensia (cum)	
626 627	Gamn	na Kaplan-Me	eier (KM) Sta	tistics		
628	Approximate Chi Square Value (313.58, α)	<u> </u>			Adjusted Chi Square Value (313.58, β)	272.7
629	95% Gamma Approximate KM-UCL (use when n>=50)	32.9		95% Gamm	na Adjusted KM-UCL (use when n<50)	33.01
630	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
631	Lognormal GC	F Test on De	etected Obse	ervations On	lly	
632	Shapiro Wilk Approximate Test Statistic	0.895			Shapiro Wilk GOF Test	
633	5% Shapiro Wilk P Value	1.9899E-5	De	etected Data	Not Lognormal at 5% Significance Lev	el
634	Lilliefors Test Statistic	0.201			Lilliefors GOF Test	
635	5% Lilliefors Critical Value	0.114	De	etected Data	Not Lognormal at 5% Significance Lev	el
636	Detected Data	Not Lognorm	al at 5% Sigr	nificance Le	vel	
637						
638	Lognormal RO	S Statistics U	Jsing Imputed	d Non-Detec	cts	
639	Mean in Original Scale	28.74			Mean in Log Scale	3.111
640	SD in Original Scale	17.58			SD in Log Scale	0.801
641	95% t UCL (assumes normality of ROS data)	32.5			95% Percentile Bootstrap UCL	32.5
642	95% BCA Bootstrap UCL	32.8			95% Bootstrap t UCL	32.7
643	95% H-UCL (Log ROS)	38.4				
644		<u>I</u>	1			
645	Statistics using KM estimates	on Logged D	ata and Assu	ıming Logno	ormal Distribution	
646	KM Mean (logged)	3.092			KM Geo Mean	22.01
647	KM SD (logged)	0.854			95% Critical H Value (KM-Log)	2.136
648	KM Standard Error of Mean (logged)	0.11			95% H-UCL (KM -Log)	40.13
649	KM SD (logged)	0.854			95% Critical H Value (KM-Log)	2.136
650	KM Standard Error of Mean (logged)	0.11				
651		1	ll .		<u>'</u>	
652		DL/2 S	tatistics			
653	DL/2 Normal				DL/2 Log-Transformed	
654	Mean in Original Scale	28.7			Mean in Log Scale	3.08
655	SD in Original Scale	17.65			SD in Log Scale	0.906
656	95% t UCL (Assumes normality)				95% H-Stat UCL	42.37
657	DL/2 is not a recommended me	ethod, provid	ed for compa	risons and	historical reasons	
658						
659	·		ion Free UCI			
660	Data do not follow a Di	scernible Dis	stribution at 5	% Significa	nce Level	
661						
662		Suggested	UCL to Use			
663	95% KM (Chebyshev) UCL	38.55				
664						
665	Note: Suggestions regarding the selection of a 959					
666	Recommendations are ba	•				
667	These recommendations are based upon the resu					
668	However, simulations results will not cover all Real V	Vorld data se	ts; for addition	nal insight t	he user may want to consult a statisticia	an.
669						
670	Со					
671						
672		General	Statistics			
673	Total Number of Observations				Number of Distinct Observations	48
674	Number of Detects				Number of Non-Detects	3
675	Number of Distinct Detects				Number of Distinct Non-Detects	3
676	Minimum Detect	1.4			Minimum Non-Detect	1

677	Α	В	С	,	D Maxi	E imum Dete	ect	F 17.3	G	Н		I	J Maxir	num Nor	K n-Detect	L 7.1
678					Varia	nce Detec	cts	14.82					Perc	ent Non-	-Detects	4.918%
679					M	lean Detec	cts	6.231						SD	Detects	3.849
680					Ме	dian Detec	cts	6						CV	Detects	0.618
681					Skewr	ness Detec	cts	0.885						Kurtosis	Detects	0.41
682				Me	an of Log	ged Detec	cts	1.623					SD of	Logged	Detects	0.683
683																
684						No	ormal (GOF Test	on Detects	Only						
685				Shap	iro Wilk	Test Statis	tic	0.914		Normal G	OF	Test on De	etected Ob	servatio	ns Only	
686				5%	Shapiro \	Wilk P Val	ue 3.4	813E-4		Detected	Data	Not Norn	nal at 5%	Significa	nce Leve	:
687				L	_illiefors ¬	Test Statis	tic	0.12				Lilliefors	GOF Tes	st		
688				5% L	illiefors C	Critical Valu	ue	0.116		Detected	Data	Not Norn	nal at 5%	Significa	nce Leve	ļ.
689						etected D	ata No	ot Normal	at 5% Sign	ificance Lo	evel					
690																
691			Ka	plan-Mei	er (KM) S	Statistics us	sing N	ormal Cr	itical Values	and other	r Noı	nparametr	ic UCLs			
692						KM Mea	an	6.071				K	(M Standa	rd Error	of Mean	0.495
693						KM S	SD	3.816					95%	KM (BC	CA) UCL	6.755
694					95%	6 KM (t) UC	CL	6.898				95% KM (Percentile	Bootstra	ap) UCL	6.914
695					95%	KM (z) U	CL	6.885					95% KM	Bootstra	ap t UCL	6.961
696				90%	KM Che	byshev UC	CL	7.556					95% KM	Chebysh	nev UCL	8.228
697				97.5%	KM Che	byshev UC	CL	9.162					99% KM	Chebysh	nev UCL	11
698							,		1						'	
699					G	amma GC	OF Tes	sts on De	tected Obse	ervations (Only					
700					A-D	Test Statis	tic	0.595			An	derson-Da	arling GOF	Test		
701				į	5% A-D (Critical Valu	ue	0.76	Detecte	ed data ap	pear	Gamma [Distributed	l at 5% S	Significan	ce Level
702					K-S	Test Statis	tic	0.092			K	olmogorov	-Smirnov	GOF		
703				ļ	5% K-S (Critical Valu	ue	0.118	Detecte	ed data ap	pear	Gamma [Distributed	l at 5% S	Significan	ce Level
704					Detected	data appe	ear Ga	mma Dis	tributed at 5	% Signific	canc	e Level				
705																
706						Gamn	na Sta	tistics on	Detected D	ata Only						
707						k hat (ML	•	2.571					star (bias			2.449
708					The	ta hat (ML		2.424				Theta	star (bias		ŕ	2.544
709						nu hat (ML	,	98.2					nu star	(bias co	rrected)	284.1
710					Me	ean (detect	ts)	6.231								
711					_			_		_		_	_		_	
712			_						ing Imputed			_	_		_	
713				•					6 NDs with r	•			•			
714		GROS ma	ay not be						s <1.0, espe	•		•		all (e.g.,	<15-20)	
715				For su					yield incorre				3TVs			
716									n the samp							
717		For ga	amma dis	stributed	detected				y be compu	ıted using	gam	nma distrib	oution on h	(M estim		
718						Minimu		0.317							Mean	6.056
719						Maximu		17.3							Median	5.9
720								3.849							CV	0.636
721						k hat (ML	,	2.3					star (bias		ŕ	2.198
722						ta hat (ML	,	2.633				Theta	star (bias			2.755
723						nu hat (ML	,	80.6					nu star	(bias co	rrected)	268.2
724						nificance (,	0.0461								
725						e (268.18,	,	31.3				•	i Square \	•	,	230.4
726	(95% Gamn	na Approx	ximate U	CL (use \	when n>=5	0)	7.023		95%	Gar	nma Adjus	sted UCL	use whe	en n<50)	7.049
727										1000=						
728					Es	timates of	Gamr	ma Paran	neters using	KM Estim	nates	S				
	·															

	А		В		С	D		Е		F	G		Н		I		J			K	Т	L
729								Mean (- 1	6.071										SD (KM		3.816
730							Va	riance (14.56								SE o	f Me	ean (KM).495
731								k hat (2.531										star (KM		2.418
732								nu hat (- 1	308.8										star (KM	•	
733								eta hat (2.398										star (KM	′	2.511
734						•		centile (1	8.886							_			tile (KM	-	1.3
735					95%	6 gamm	a per	centile (KM)	13.58						99%	gamm	na pe	rcen	tile (KM) 1	8.57
736								G	amms	a Kaplan-Me	ier (KM) St	tatietic	re									
737			Apn	oroxin	nate Chi S	Square '	Value			256.2	sier (Rivi) Or	lausuc		Adiı	ısted	Chi S	guare	Valu	e (29	94.96, β	3) 25	5.3
738	95	% Ga			imate KN	•		,		6.99		95%	6 Gan				•		•	en n<50		7.014
739									/						,			(1	
740 741							Lo	gnorma	I GOF	Test on De	etected Obs	servat	ions (Only								
741			5	Shapi	ro Wilk A	pproxim	nate T	est Stat	istic	0.938				S	hapiro	Wilk	GOF	Test				
743					į	5% Sha	piro V	Vilk P V	alue	0.00765	С	Detect	ted Da	ata No	ot Log	norma	al at 5	% Siç	gnific	cance L	evel	
744						Lilliet	fors T	est Stat	istic	0.127					Lillief	ors G	OF Te	est				
745					5'	% Lillief	fors C	ritical Va	alue	0.116	С	Detect	ted Da	ata No	ot Log	norma	al at 5	% Si	gnific	cance L	evel	
746							Det	ected D	ata N	lot Lognorm	al at 5% Siç	gnifica	ance	Level								
747																						
748										Statistics U	sing Impute	ed No	n-De	tects								
749								iginal S		6.056							٨			og Scale		1.582
750								iginal S		3.842										og Scale		0.705
751			95% t	UCL	(assume					6.878					9.	5% Pe				trap UCI		5.834
752					(otstrap l		6.906							95%	6 Boo	otstra	ap t UCI	6	5.974
753						95% F	1-UCL	. (Log R	08)	7.489												
754					Static	tice ueir	na KM	l actima	toe o	n Logged Da	ata and Acc	eumin	a Loc	norm	al Die	tributi	on					
755					Statis		-	an (logo		1.583	ala aliu Ass	Summ	y Log	JIIOIIII	iai Dis	uibuu	OII	KI	M G	eo Meai	n 4	1.871
756								SD (logg		0.702					9!	5% Cr	itical l			KM-Log		2.006
757				K۱	/I Standar	rd Error				0.0916										KM -Log	-	7.472
758 759								SD (logg		0.702					9	5% Cr				KM-Log		2.006
760				K۱	/I Standar	rd Error	of Me	an (log	ged)	0.0916									-			
761																						
762										DL/2 St	atistics											
763					DL/2 N	Normal								D	L/2 L	og-Tra	ansfor	med				
764						Mean	in Or	iginal S	cale	6.048							١	/lean	in L	og Scal	a 1	1.573
765								iginal S		3.852										og Scale).731
766					95% t L	•			• •	6.872								95%	H-9	Stat UCI	_ 7	7.622
767					DL/2 i	s not a ı	recon	nmende	d met	thod, provide	ed for comp	pariso	ns an	nd hist	torical	reaso	ons					
768								N1.				OL 6:										
769						D		<u>-</u>		Commo Dio					l e	1						
770						Dete	cred	vata ap	pear	Gamma Dis	unduted at	ე% S i	ignific	ance	Level	l						
771										Suggested	IICL to Use	<u> </u>										
772				O1	5% KM A	nnrovim	nate C	amma l		6.99	10 OSE			95%	GRO)S Ani	nrovin	nate (Gam	ıma UCI	-	7.023
773				J.	2 /U IXIVI /X	PPIOVIII		.a.iiiia (JUL	0.00				JJ /0	, and	, o App	PIOAIII	.u.c (Juli		′	.020
774		Not	e: Suaa	estio	ns regard	ling the	selec	tion of a	95%	UCL are pr	ovided to h	elp th	e use	er to s	elect t	the mo	ost ap	propr	iate	95% U(CL.	
775 776			33							ed upon dat								1				
777		Th	ese reco	ommo						Its of the sim								le, an	ıd Le	e (2006	 3).	$\overline{}$
778	ŀ									orld data se						-				-	•	
779																						$\overline{}$
	Cu																					

	Α	В		С		D		E	F	G		Н		ı		J		K	L
781									Genera	Statistics									
782				Total	Numb	or of (hear	vations	61					Numh	har of	Distinc	t Ohec	ervations	58
783				Total				Detects	60					INUITIL				-Detects	
784				Nu				Detects	57					Num				-Detects	•
785				inu	annbei			Detect	4.2					INUIII	ibei o			n-Detect	
786								Detect	82.6									n-Detect	
787								Detects	173.6									-Detects	
788								Detects	28.28							i eicei		Detects	
789								Detects	28.4									Detects	
790								Detects	1.168							Kı		Detects	
791								Detects	3.218									Detects	_
792				<u>'</u>	Mean	OI LO	ggeu i	Detects	5.210							3D 01 L	.oggeu	Detects	0.552
793								Norm	al GOF Te	et on Detec	te O	alv							-
794				Sk	haniro	\Wilk	Test S	Statistic	0.924	st on Detec		-	OF To	et on D)etect	ed Ohe	envetic	ons Only	,
795								P Value	0.00104									nce Lev	
796						-		Statistic	0.00104			iecieu		Lilliefor			griiica	ilice Lev	
797				50				l Value	0.116		Do	toctod					anifica	ince Lev	ol
798					/o LIIIIE				Not Norma	ol at E% Sid				NOL INOI	IIIai a	1 3 /6 31	griilica	ince Lev	eı
799							Jeleci	eu Dale	I NOL NOITIA	ai at 5% Sig	Jillic	ance L	evei						
800			L	Caplan A	Major /	(V.N.A.) C	Statisti	ioo uoin	g Normal C	ritical \/alu		d otho	r Nonn	oromot	tria I I	CLo			
801			r	Napian-iv	vieler ((IXIVI) S		/ Mean	27.85	riucai vaiu	es ar	ia otnei	гиопр				l Error	of Mear	1.727
802								KM SD	13.38						KIVI S			CA) UCL	
803						0.50			30.74				01	=0/ IZNA	/Da ==		•	•	
804								(t) UCL					9:	0% KIVI				ap) UCL	
805				0	00/ 1/1		•	z) UCL	30.69									ap t UCL	
806								ev UCL	33.03									nev UCL	
807				97.	.5% KI	W Che	ebysne	ev UCL	38.64						99%	6 KIVI C	nebysi	nev UCL	45.04
808						,	-amm	o COE	Tests on D	atastad Ob	005/	ationa ()nlv						
809								Statistic	1.444	elected Ob	Serva	auoris C		oreen D)orline	COE	Toot		
810					E0/			l Value	0.754	Dot	actod	I Doto N				GOF		anifican	ce Level
811					3 /0			Statistic	0.754	Deti	ecieu	Dala I				irnov G		grillicario	e resei
812					5%			l Value	0.130	Dot	actod	l Data N		_				anifican	ce Level
813									Samma Dis						טוווט	uteu at	3 /0 SI	grillicario	e resei
814						/GIGCIG	su Dai	la NOL C		ilibuteu at v	<i>7/</i> 0 G	igillica	IICE L	3461					
815									Statistics o	n Detected	Data	Only							
816								t (MLE)	4.172	ii Delected	Date	Cilly			k etai	r (hiae c	correct	ed MLE)	3.975
817						Tho		t (MLE)	6.779							•		ed MLE)	
818								t (MLE)	500.7					inel		•		orrected)	
819								letects)	28.28						11	u siai (l	oias CC	JII GCIGU)	7//
820						ivit	ouri (u	, C.(C(S)	20.20										
821						•	Gamm	na B∪e	Statistics u	sina Imput	ed N	on-Det	arte						
822			CBO	OS may	not be				et has > 50					/ations	at mi	ıltinle D	ıle		
823		GBUS ~							small such									<15.20	
824		GI (OS III	iay IIUL						method ma								، ر ت .g.,	-10-20	
825				FUI	i SuCII				ally true wh					Lo allu	יוט (۱۷				
826		For a	amma 4	distribut	ed det				and UCLs m					na dietri	ibutio	n on Ki	/ petim	nates	
827		1 01 9	jurriiria (aistribult	.cu uel	.oo. c u		inimum	4.2	ay be com	Puiel	a using	gaiiii	ia aistil	ibuilU	OII KIN	n couii	Mean	27.92
828								ximum	82.6									Median	
829							ivia	SD	13.37									CV	
830							k hat	t (MLE)	3.859						k cto	r (bioc o	Orroot	ed MLE)	
831						The		t (MLE)	7.235							•		ed MLE)	
832						1116	ia IIdl	· (IVILE)	7.230					inel	ia Sidi	(DIAS C	Jonett	ou wile,	7.500

222	A B C D E nu hat (MLE)	F 470.8	G	Н	I	J nu star (bia	K s corrected)	L 448.9
833	Adjusted Level of Significance (β)	0.0461				(0.0	,	
834	Approximate Chi Square Value (448.94, α)				Adjusted Chi	Square Value	e (448.94, β)	399.7
835 836	95% Gamma Approximate UCL (use when n>=50)	31.27			•	ted UCL (use	,	31.35
837	·· · · · · · · · · · · · · · · · · · ·						•	
838	Estimates of G	amma Paran	neters using	KM Estima	ites			
839	Mean (KM)	27.85					SD (KM)	13.38
840	Variance (KM)	179				SE of	f Mean (KM)	1.727
841	k hat (KM)	4.334					k star (KM)	4.132
842	nu hat (KM)	528.7					nu star (KM)	504.1
843	theta hat (KM)	6.427				the	eta star (KM)	6.741
844	80% gamma percentile (KM)	38.26			90	% gamma per	centile (KM)	46.22
845	95% gamma percentile (KM)	53.53			99	% gamma per	centile (KM)	69.13
846			1					
847	Gamm	a Kaplan-Me	eier (KM) Sta	itistics				
848	Approximate Chi Square Value (504.06, α)				-	Square Value		451.8
849	95% Gamma Approximate KM-UCL (use when n>=50)	30.99		95% Gamr	ma Adjusted	KM-UCL (use	when n<50)	31.07
850								
851	Lognormal GO		etected Obse	ervations O	•			
852	Shapiro Wilk Approximate Test Statistic	0.898			•	ilk GOF Test		
853	5% Shapiro Wilk P Value		De	etected Dat	•	mal at 5% Sig	ınificance Le	/el
854	Lilliefors Test Statistic	0.185				GOF Test		
855	5% Lilliefors Critical Value	0.114				mal at 5% Sig	Inificance Lev	/el
856	Detected Data I	Not Lognorm	al at 5% Sigr	nificance Le	evel			
857								
858	Lognormal ROS		Jsing Imputed	d Non-Dete	ects			0.405
859	Mean in Original Scale	27.92					in Log Scale	3.195
860	SD in Original Scale	13.36			050/		n Log Scale	0.575
861	95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL	30.78			95%	Percentile Bo	•	30.74
862	95% BCA Bootstrap OCL 95% H-UCL (Log ROS)	31.13				95% 600	tstrap t UCL	30.98
863	93 % H-UCL (LUG NOS)	33.2						
864	Statistics using KM estimates of	n Logged D	ata and Acci	ımina Loan	ormal Dietrih	ution		
865	KM Mean (logged)	3.176	ata ana Assu	ining Logi	iormai Distrib		// Geo Mean	23.96
866	KM SD (logged)	0.631			95%	Critical H Val		1.952
867	KM Standard Error of Mean (logged)	0.0814					L (KM -Log)	34.27
868	KM SD (logged)	0.631			95%	Critical H Value	, ,,	1.952
869	KM Standard Error of Mean (logged)	0.0814					37	
870	, ,							
871 872		DL/2 St	tatistics					
873	DL/2 Normal				DL/2 Log-	Transformed		
874	Mean in Original Scale	27.84				Mean i	in Log Scale	3.165
875	SD in Original Scale	13.52				SD i	n Log Scale	0.685
876	95% t UCL (Assumes normality)	30.73				95%	H-Stat UCL	35.74
877	DL/2 is not a recommended me	thod, provid	ed for compa	arisons and	historical rea	asons		
878								
879	Nonparame	tric Distribut	ion Free UCI	L Statistics				
880	Data do not follow a Di	scernible Dis	stribution at 5	5% Significa	ance Level			
881								
882		Suggested	UCL to Use					
883	95% KM (Chebyshev) UCL	35.38						
884								

	A B C D E	F	G	Н		J	K	L
885	Note: Suggestions regarding the selection of a 95% Recommendations are based on the selection of a 95%		· ·				late 95% UCI	
886	These recommendations are based upon the resu	· · · · · · · · · · · · · · · · · · ·					d Lee (2006)	
887	However, simulations results will not cover all Real W						. ,	
888	Trowever, simulations results will not cover all recur vi	vona data 30	to, for addition	iai irisigiit ti	ic doci illa	y want to cons	- Contraction	<u> </u>
889	Pb							
690								
891 892		General	Statistics					
893	Total Number of Observations	61			Numb	er of Distinct C	bservations	51
894	Number of Detects	60				Number of I	Non-Detects	1
895	Number of Distinct Detects	50			Numb	er of Distinct I	Non-Detects	1
896	Minimum Detect	1.2				Minimum	Non-Detect	1
897	Maximum Detect	70.3				Maximum	Non-Detect	1
898	Variance Detects	114.3				Percent I	Non-Detects	1.639%
899	Mean Detects	11.65					SD Detects	10.69
900	Median Detects	9.05					CV Detects	0.918
901	Skewness Detects	3.294				Kurt	osis Detects	14.91
902	Mean of Logged Detects	2.18				SD of Log	ged Detects	0.739
903							. <u></u>	
904			t on Detects C					
905	Shapiro Wilk Test Statistic					etected Obser		
906	5% Shapiro Wilk P Value		D	etected Dat		nal at 5% Sign	ificance Leve)l
907	Lilliefors Test Statistic	0.287	_			GOF Test		
908	5% Lilliefors Critical Value	0.114				nal at 5% Sign	ificance Leve	<u>!</u>
909	Detected Data	a Not Normal	at 5% Signific	cance Leve	l			
910	Kaplan-Meier (KM) Statistics usin	a Normal Cri	itiaal Valuas a	nd other No	nnoromotr	io IICI o		
911	KM Mean	_	ilicai values a	iiu ouiei ivo		M Standard E	rror of Mean	1.369
912	KM SD	10.6					(BCA) UCL	13.96
913	95% KM (t) UCL	13.76			95% KM (Percentile Boo		13.82
914	95% KM (z) UCL					95% KM Boo	' /	15
915	90% KM Chebyshev UCL					95% KM Che	•	17.44
916 917	97.5% KM Chebyshev UCL	20.02				99% KM Che		25.1
918	-							
919	Gamma GOF	Tests on De	tected Observ	ations Only	/			
920	A-D Test Statistic	2.433		Aı	nderson-Da	arling GOF Te	st	
921	5% A-D Critical Value	0.763	Detecte	d Data Not	Gamma Di	stributed at 5%	6 Significance	e Level
922	K-S Test Statistic	0.198		K	Colmogorov	-Smirnov GOF	=	
923	5% K-S Critical Value	0.116	Detecte	d Data Not	Gamma Di	stributed at 5%	6 Significance	e Level
924	Detected Data Not 0	Gamma Distr	ibuted at 5% S	Significance	Level			
925								
926			Detected Dat	a Only		-	-	
927	k hat (MLE)	1.97				star (bias cor	ŕ	1.882
928	Theta hat (MLE)				Theta	star (bias cor	Í	6.189
929	nu hat (MLE)					nu star (bia	s corrected)	225.9
930	Mean (detects)	11.65						
931		0						
932	Gamma ROS							
933	GROS may not be used when data s			-		•		
934	GROS may not be used when kstar of detects is						e.g., <15-20)	
935	For such situations, GROS					O I VS		
936	This is especi	ally true whe	en tne sample	size is sma	II.			

937	A B C D E For gamma distributed detected data, BTVs a	F and UCLs ma	G H I J K A A B A B A B A B A B A B A B A B A B	L
938	Minimum	0.01	Mean	11.46
939	Maximum	70.3	Median	9
940	SD	10.71	CV	0.934
941	k hat (MLE)	1.498	k star (bias corrected MLE)	1.435
942	Theta hat (MLE)	7.65	Theta star (bias corrected MLE)	7.985
943	nu hat (MLE)	182.7	nu star (bias corrected)	175.1
944	Adjusted Level of Significance (β)	0.0461		
945	Approximate Chi Square Value (175.09, α)	145.5	Adjusted Chi Square Value (175.09, β)	144.8
946	95% Gamma Approximate UCL (use when n>=50)	13.79	95% Gamma Adjusted UCL (use when n<50)	13.85
947				
948	Estimates of G	amma Parar	meters using KM Estimates	
949	Mean (KM)	11.48	SD (KM)	10.6
950	Variance (KM)	112.4	SE of Mean (KM)	1.369
951	k hat (KM)	1.172	k star (KM)	1.125
952	nu hat (KM)	142.9	nu star (KM)	137.2
953	theta hat (KM)	9.795	theta star (KM)	10.2
954	80% gamma percentile (KM)	18.28	90% gamma percentile (KM)	25.67
955	95% gamma percentile (KM)	32.99	99% gamma percentile (KM)	49.84
956				
957			eier (KM) Statistics	
958	Approximate Chi Square Value (137.23, α)			110.6
959	95% Gamma Approximate KM-UCL (use when n>=50)	14.17	95% Gamma Adjusted KM-UCL (use when n<50)	14.24
960				
961	-		etected Observations Only	
962	Shapiro Wilk Approximate Test Statistic	0.941	Shapiro Wilk GOF Test	
963	5% Shapiro Wilk P Value	0.01	Detected Data Not Lognormal at 5% Significance Leve	I
964	Lilliefors Test Statistic	0.155	Lilliefors GOF Test	
965	5% Lilliefors Critical Value	0.114	Detected Data Not Lognormal at 5% Significance Leve	I
966	Detected Data I	Not Lognorm	nal at 5% Significance Level	
967				
968	_		Jsing Imputed Non-Detects	
969	Mean in Original Scale	11.48	Mean in Log Scale	2.15
970	SD in Original Scale	10.68	SD in Log Scale	0.771
971	95% t UCL (assumes normality of ROS data)	13.77	95% Percentile Bootstrap UCL	13.83
972	95% BCA Bootstrap UCL	14.58	95% Bootstrap t UCL	14.94
973	95% H-UCL (Log ROS)	14.19		
974				
975			ata and Assuming Lognormal Distribution	0.54
976	KM Mean (logged)	2.145	KM Geo Mean	8.54
977	KM SD (logged)	0.778	95% Critical H Value (KM-Log)	2.069
			95% H-UCL (KM -Log)	14.22
978	KM Standard Error of Mean (logged)	0.1	A=0/ A 1/	0.000
978 979	KM Standard Error of Mean (logged) KM SD (logged)	0.778	95% Critical H Value (KM-Log)	2.069
	KM Standard Error of Mean (logged)		95% Critical H Value (KM-Log)	2.069
979	KM Standard Error of Mean (logged) KM SD (logged)	0.778 0.1		2.069
979 980	KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)	0.778 0.1	tatistics	2.069
979 980 981	KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) DL/2 Normal	0.778 0.1 DL/2 S	tatistics DL/2 Log-Transformed	
979 980 981 982	KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale	0.778 0.1 DL/2 S	tatistics DL/2 Log-Transformed Mean in Log Scale	2.133
979 980 981 982 983	KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale	0.778 0.1 DL/2 S 11.47 10.7	tatistics DL/2 Log-Transformed Mean in Log Scale SD in Log Scale	2.133 0.82
979 980 981 982 983 984	KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality)	0.778 0.1 DL/2 S 11.47 10.7 13.76	tatistics DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL	2.133
979 980 981 982 983 984 985	KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality)	0.778 0.1 DL/2 S 11.47 10.7 13.76	tatistics DL/2 Log-Transformed Mean in Log Scale SD in Log Scale	2.133 0.82
979 980 981 982 983 984 985	KM Standard Error of Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality)	0.778 0.1 DL/2 S 11.47 10.7 13.76	tatistics DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL	2.133 0.82

989	A B C D E Nonparame	F etric Distribution	G H	⊣ l stics	J	K	L
990	Data do not follow a D	iscernible Dist	tribution at 5% Sig	nificance Leve	l		
991							
992		Suggested L	UCL to Use				
993	95% KM (Chebyshev) UCL	. 17.44					
994						I_	
995	Note: Suggestions regarding the selection of a 95°	% UCL are pro	ovided to help the	user to select t	the most appro	priate 95% UCL	
996	Recommendations are ba	sed upon data	a size, data distribi	ution, and skev	wness.		
997	These recommendations are based upon the res	ults of the sim	nulation studies sur	mmarized in Si	ngh, Maichle,	and Lee (2006).	
998	However, simulations results will not cover all Real V	Vorld data set	ts; for additional ins	sight the user r	may want to co	nsult a statistici	an.
999							
1000	Мо						
001							
002		General S	Statistics				
003	Total Number of Observations	15		Nur	mber of Distino	t Observations	1
004					Number	of Non-Detects	15
005	Number of Distinct Detects	0		Nu	mber of Distin	ct Non-Detects	1
1006		<u> </u>					
007		•					
800							
009	The Project Team may decide to use alternative sit	te specific valu	ues to estimate en	vironmental pa	arameters (e.g.	., EPC, BTV).	
010							
_	The state of		Ma	ssedl			
011	i ne data se	et for variable	Mo was not proces				
		et for variable	mo was not proces				
1012		et for variable	mo was not proces				
1011 1012 1013 1014	Ni:	et for variable	Mo was not proces				
1012 1013	Ni						
012 013 014 015	Ni	General S					
012 013 014 015 016	Ni Total Number of Observations	General S				et Observations	60
012 013 014 015 016	Ni Total Number of Observations Number of Detects	General S		Nur	Number	of Non-Detects	1
012 013 014 015 016 017 018	Ni Total Number of Observations Number of Detects Number of Distinct Detects	General S 6 61 6 60 6 59		Nur	Number of Distin	of Non-Detects	1
012 013 014 015 016 017 018	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	General S 6 61 6 60 6 59 1 3.1		Nur	Number of Distin	of Non-Detects ct Non-Detects um Non-Detect	1 1 1
012 013 014 015 016 017 018 019 020	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	General S 6 61 6 60 6 59 1 3.1 8 89.8		Nur	Number of Distin Minime	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect	1 1 1
012 013 014 015 016 017 018 019 020 021	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects	General S 5 61 6 60 5 59 1 3.1 1 89.8 5 386.3		Nur	Number of Distin Minime	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect nt Non-Detects	1 1 1 1 1.639%
012 013 014 015 016 017 018 019 020	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	General S 6 61 6 60 6 59 1 3.1 8 89.8 6 386.3 6 30.8		Nur	Number of Distin Minime	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect nt Non-Detects SD Detects	1 1 1 1 1.639% 19.66
012 013 014 015 016 017 018 019 020 021 022 023 024	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Median Detects	General S 6 61 6 60 6 59 1 3.1 1 89.8 6 386.3 6 30.8 6 28.45		Nur	Number of Distin Minimi Maximi Perce	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect nt Non-Detects SD Detects CV Detects	1 1 1 1 1.639% 19.66 0.638
012 013 014 015 016 017 018 019 020 021 022 023 024	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects	General S 6 61 6 60 6 59 1 3.1 8 89.8 6 386.3 6 30.8 6 28.45 6 1.241		Nur	Number of Distin Minimo Maximo Perceo	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect nt Non-Detects SD Detects CV Detects urtosis Detects	1 1 1 1 1.639% 19.66 0.638 1.766
1012 1013 1014 1015 1016 1017 1018 1020 1021 1022 1023 1024 1025	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	General S 6 61 6 60 6 59 1 3.1 8 89.8 6 386.3 6 30.8 6 28.45 6 1.241		Nur	Number of Distin Minimo Maximo Perceo	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect nt Non-Detects SD Detects CV Detects	1 1 1 1 1.639% 19.66 0.638
012 013 014 015 016 017 018 019 020 021 022 023 024 025 026	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	General S 6 61 6 60 6 59 1 3.1 8 89.8 6 386.3 6 30.8 6 28.45 1.241 6 3.207	Statistics	Nur	Number of Distin Minimo Maximo Perceo	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect nt Non-Detects SD Detects CV Detects urtosis Detects	1 1 1 1 1.639% 19.66 0.638 1.766
012 013 014 015 016 017 018 020 021 022 023 024 025 026 027	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Norr	General S 6 61 6 60 6 59 1 3.1 1 89.8 6 386.3 6 28.45 6 1.241 6 3.207	Statistics Statistics	Nur	Number of Distin Minimi Maximi Percei K SD of L	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect nt Non-Detects SD Detects CV Detects urtosis Detects	1 1 1 1 1.639% 19.66 0.638 1.766
012 013 014 015 016 017 018 020 021 022 023 024 025 026 027 028	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Norr Shapiro Wilk P. Value	General S 6 61 6 60 6 59 1 3.1 1 89.8 6 386.3 6 30.8 6 28.45 6 1.241 6 3.207 mal GOF Test 6 0.883	Statistics Statistics	Nur Nu	Number of Distin Minimore Maximore Percel K SD of L	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect nt Non-Detects SD Detects CV Detects urtosis Detects cogged Detects	1 1 1 1.639% 19.66 0.638 1.766 0.725
012 013 014 015 016 017 018 020 021 022 023 024 025 026 027 028 029	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value	General S 6 61 6 60 5 59 1 3.1 1 89.8 6 386.3 6 28.45 6 1.241 6 3.207 mal GOF Test 6 0.883 6 4.3491E-6	Statistics Statistics	Nur Nu Il GOF Test on ed Data Not No	Number of Distin Minimi Maximi Perce K SD of L	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect nt Non-Detects SD Detects CV Detects urtosis Detects	1 1 1 1.639% 19.66 0.638 1.766 0.725
012 013 014 015 016 017 018 020 021 022 023 024 025 026 027 028 029 030	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic	General S 6 61 6 60 6 59 1 3.1 1 89.8 6 386.3 6 28.45 6 1.241 6 3.207 mal GOF Test 1 0.883 6 4.3491E-6 6 0.14	Statistics on Detects Only Norma Detects	Nur Nu Il GOF Test on ed Data Not No Lillief	Number of Distin Minimi Maximi Percel K SD of L Detected Obsormal at 5% Si fors GOF Test	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect nt Non-Detects SD Detects CV Detects urtosis Detects cogged Detects	1 1 1 1.639% 19.66 0.638 1.766 0.725
012 013 014 015 016 017 018 020 021 022 023 024 025 026 027 028 029 030 031	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic	General S 6 61 6 60 6 59 1 3.1 8 9.8 3 36.3 3 30.8 6 28.45 1.241 3 .207 mal GOF Test 0 .883 4 .3491E-6 5 0.14 6 0.114	Statistics I on Detects Only Norma Detecte Detecte	Nur Nu Il GOF Test on ed Data Not No Lillief ed Data Not No	Number of Distin Minimi Maximi Percel K SD of L Detected Obsormal at 5% Si fors GOF Test	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect nt Non-Detects SD Detects CV Detects urtosis Detects cogged Detects	1 1 1 1.639% 19.66 0.638 1.766 0.725
012 013 014 015 016 017 018 020 021 022 023 024 025 026 027 028 029 030 031 032	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Dat	General S 6 61 6 60 6 59 1 3.1 8 9.8 3 36.3 3 30.8 6 28.45 1.241 3 .207 mal GOF Test 0 .883 4 .3491E-6 5 0.14 6 0.114	Statistics on Detects Only Norma Detects	Nur Nu Il GOF Test on ed Data Not No Lillief ed Data Not No	Number of Distin Minimi Maximi Percel K SD of L Detected Obsormal at 5% Si fors GOF Test	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect nt Non-Detects SD Detects CV Detects urtosis Detects cogged Detects	1 1 1 1.639% 19.66 0.638 1.766 0.725
012 013 014 015 016 017 018 020 021 022 023 024 025 026 027 028 029 030 031 032 033	Ni Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Dat	General S 6 61 6 60 5 59 1 3.1 8 9.8 3 36.3 6 30.8 6 28.45 6 1.241 6 3.207 mal GOF Test 1 0.883 6 4.3491E-6 6 0.14 6 0.114 a Not Normal	Statistics on Detects Only Norma Detecte Detecte at 5% Significance	Nur Nu Il GOF Test on ed Data Not No Lillief ed Data Not No e Level	Number of Distin Minimo Maximo Percel K SD of L Detected Obsormal at 5% Si fors GOF Test ormal at 5% Si	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect nt Non-Detects SD Detects CV Detects urtosis Detects cogged Detects	1 1 1 1.639% 19.66 0.638 1.766 0.725
012 013 014 015 016 017 018 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Dat Kaplan-Meier (KM) Statistics usin	General S 6 61 6 60 6 59 1 3.1 1 89.8 1 386.3 3 30.8 2 8.45 1 .241 3 .207 mal GOF Test 1 0.883 2 4.3491E-6 2 0.14 2 0.114 2 Not Normal mg Normal Crit	Statistics on Detects Only Norma Detecte Detecte at 5% Significance	Nur Nu Il GOF Test on ed Data Not No Lillief ed Data Not No e Level	Number of Distin Minimi Maximi Percer K SD of L Detected Obsormal at 5% Si fors GOF Test ormal at 5% Si etric UCLs	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect nt Non-Detects SD Detects CV Detects urtosis Detects ogged Detects ervations Only gnificance Leve	1 1 1 1.639% 19.66 0.638 1.766 0.725
012 013 014 015 016 017 018 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Lilliefors Test Statistic 5% Shapiro Wilk P Value Lilliefors Critical Value Detected Dat Kaplan-Meier (KM) Statistics usin	General S 6 61 6 60 6 59 1 3.1 1 89.8 6 386.3 6 30.8 6 28.45 6 1.241 6 3.207 mal GOF Test 6 0.883 6 4.3491E-6 7 0.114 7 0.114 7 a Not Normal 7 mg Normal Crit	Statistics on Detects Only Norma Detecte Detecte at 5% Significance	Nur Nu Il GOF Test on ed Data Not No Lillief ed Data Not No e Level	Number of Distin Minimore Maximore Percel K SD of L Detected Obsormal at 5% Siriors GOF Test ormal at 5% Siriors GOF Test Cornel at 5% Siriors GOF Test Cornel at 5% Siriors GOF Test Cornel at 5% Siriors GOF Test	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect nt Non-Detects SD Detects CV Detects urtosis Detects cogged Detects cervations Only gnificance Leve	1 1 1 1.639% 19.66 0.638 1.766 0.725
012 013 014 015 016 017 018 020 021 022 023 024 025 026 027 028 030 031 032 033 034 035 036 037	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Median Detects Median Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Norr Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Dat Kaplan-Meier (KM) Statistics usin KM Mean KM SD	General S 6 61 6 60 5 59 1 3.1 1 89.8 386.3 30.8 28.45 1 .241 3 .207 mal GOF Test 1 0.883 4 .3491E-6 1 0.114 2 0.114 2 Not Normal mg Normal Crit 1 30.31 1 19.7	Statistics on Detects Only Norma Detecte Detecte at 5% Significance	Nur Nu Nu I GOF Test on ed Data Not No Lillief ed Data Not No e Level	Number of Distin Minimi Maximi Percei K SD of L Detected Obsormal at 5% Si fors GOF Test formal at 5% Si etric UCLs KM Standard	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect nt Non-Detects SD Detects CV Detects urtosis Detects ogged Detects ervations Only gnificance Leve	1 1 1 1.639% 19.66 0.638 1.766 0.725
1012 1013 1014 1015 1016 1017 1018 1020 1021 1023 1024 1025 1026 1027 1028 1030 1031 1032 1033 1034 1035 1036 1037 1038	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Norr Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Dat Kaplan-Meier (KM) Statistics usin KM Mean KM SD 95% KM (t) UCL	General S 6 61 6 60 7 59 8 3.1 8 89.8 7 386.3 7 30.8 7 28.45 7 1.241 7 3.207 Mal GOF Test 8 0.883 8 4.3491E-6 9 0.114 9 0.114 9 0.114 9 0.114 1 30.31 1 19.7 1 34.56	Statistics on Detects Only Norma Detecte Detecte at 5% Significance	Nur Nu Nu I GOF Test on ed Data Not No Lillief ed Data Not No e Level	Number of Distin Minimi Maximi Percei K SD of L Detected Obsormal at 5% Si fors GOF Test ormal at 5% Si M Standard 95% I	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect um Non-Detect nt Non-Detects CV Detects urtosis Detects cogged Detects cervations Only gnificance Leve d Error of Mean KM (BCA) UCL Bootstrap) UCL	1 1 1 1.639% 19.66 0.638 1.766 0.725
012 013 014 015 016 017 018 020 021 023 024 025 026 027 028 030 031 032 033 034 035 036 037	Ni Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Norr Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Dat Kaplan-Meier (KM) Statistics usir KM Mean KM SD 95% KM (t) UCL	General S 6 61 6 60 6 59 7 3.1 7 89.8 7 386.3 7 30.8 7 1.241 7 3.207 8 0.883 8 4.3491E-6 8 0.14 9 0.114 9 0.114 9 Normal Crit	Statistics on Detects Only Norma Detecte Detecte at 5% Significance	Nur Nu Nu I GOF Test on ed Data Not No Lillief ed Data Not No e Level	Number of Distin Minimi Maximi Percei K SD of L Detected Obsormal at 5% Si fors GOF Test ormal at 5% Si M Standard 95% I M (Percentile E	of Non-Detects ct Non-Detects um Non-Detect um Non-Detect nt Non-Detects SD Detects CV Detects urtosis Detects ogged Detects ervations Only gnificance Leve	1 1 1 1.639% 19.66 0.638 1.766 0.725

1011	Α	В	C	D 97.5% KM Che	E bvshev UCL	F 46.19	G	Н	I	99% KM Che	K ebyshev UCL	L 55.61
1041					2,0						20,00. 002	
1042				G	amma GOF	Tests on De	tected Obse	rvations O	nly			
1043 1044					est Statistic					Darling GOF Te	 est	
1044				5% A-D C	Critical Value	0.761	Detect			Distributed at 5		e Level
1045				K-S 1	est Statistic	0.13			Kolmogor	ov-Smirnov GO)F	
1047				5% K-S C	Critical Value	0.116	Detect	ted Data No	ot Gamma I	Distributed at 5	% Significance	e Level
1047				Detecte	d Data Not 0	 Gamma Distri	ibuted at 5%	Significan	ce Level			
1048												
1050					Gamma	Statistics on	Detected Da	ata Only				
1051					k hat (MLE)	2.422				k star (bias co	rrected MLE)	2.312
1052				The	ta hat (MLE)	12.72			The	ta star (bias co	rrected MLE)	13.32
1053				r	nu hat (MLE)	290.6				nu star (bi	as corrected)	277.4
1054				Me	an (detects)	30.8						
1055												
1056				G	amma ROS	Statistics us	ing Imputed	Non-Detec	cts			
1057			GROS m	ay not be used	when data s	et has > 50%	NDs with m	nany tied o	bservations	at multiple DL	S	
1058		GROS ma	y not be us	ed when kstar	of detects is	small such a	s <1.0, espe	cially wher	the sampl	e size is small ((e.g., <15-20)	
1059				For such situati	ons, GROS	method may	yield incorre	ect values o	of UCLs and	d BTVs		
1060				Т	his is especi	ally true whe	n the sample	e size is sn	nall.			
1061		For ga	mma distrik	outed detected	data, BTVs a	and UCLs ma	y be compu	ted using g	jamma dist	ribution on KM	estimates	
1062					Minimum	1.372					Mean	30.31
1063					Maximum	89.8					Median	28.3
1064					SD	19.85					CV	0.655
1065					k hat (MLE)	2.135				k star (bias co	rrected MLE)	2.041
1066				The	ta hat (MLE)	14.2			The	eta star (bias co	rrected MLE)	14.85
1067			-	r	nu hat (MLE)	260.5				nu star (bi	as corrected)	249
1068			Adjust	ed Level of Sign	nificance (β)	0.0461						
1069		Аррі	roximate Cl	hi Square Value	e (249.05, α)	213.5			Adjusted C	Chi Square Valu	ıe (249.05, β)	212.7
1070	g	95% Gamma	a Approxim	nate UCL (use v	vhen n>=50)	35.36		95% (Gamma Adj	usted UCL (use	e when n<50)	35.49
1071			-			I						
1072			-	Es	timates of G	amma Paran	neters using	KM Estima	ates			
1073					Mean (KM)	30.31					SD (KM)	19.7
1074				Va	ariance (KM)	388				SE o	of Mean (KM)	2.543
1075					k hat (KM)	2.368					k star (KM)	2.262
1076					nu hat (KM)	288.9					nu star (KM)	276
1077					eta hat (KM)						eta star (KM)	13.4
1078				0% gamma per	` ,					90% gamma pe	` ′	57.28
1079			9	5% gamma per	centile (KM)	69.18			(99% gamma pe	ercentile (KM)	95.38
1080												
1081						na Kaplan-Me	eier (KM) Sta	atistics				
1082				hi Square Value					•	Chi Square Valu		237.7
1083	95%	Gamma Ap	proximate	KM-UCL (use v	vhen n>=50)	35.07		95% Gam	ma Adjuste	ed KM-UCL (use	e when n<50)	35.19
1084												
1085						F Test on De	etected Obse	ervations C				
1086		S	hapiro Wilk	Approximate T					-	Wilk GOF Test		
1087				5% Shapiro V			De	etected Da	_	ormal at 5% Si	gnificance Lev	/el
1088					est Statistic					ors GOF Test		
1089				5% Lilliefors C						normal at 5% Si	gnificance Lev	/el
1090				Det	tected Data I	Not Lognorm	al at 5% Sig	nificance L	evel			
1091												
1092				Log	gnormal RO	S Statistics U	Ising Impute	d Non-Dete	ects			

i l	Α	В	С	D	E	F	G	Н	I	J K	L
1093	3			Mean in Origin	nal Scale	30.35	•		•	Mean in Log Scale	3.176
1094				SD in Origii	nal Scale	19.79				SD in Log Scale	0.757
1095	5	95% t L	•	s normality of R	· ·	34.59			959	% Percentile Bootstrap UCL	34.57
1096)		9	95% BCA Boots		34.87				95% Bootstrap t UCL	35.06
1097	,			95% H-UCL (L	og ROS)	39.01					
1098	3										
1099)		Statis	tics using KM e			ata and Assu	ming Logr	normal Distr		
1100)			KM Mean		3.154				KM Geo Mean	23.44
1101					(logged)	0.821			959	% Critical H Value (KM-Log)	2.106
1102)		KM Standar	d Error of Mean		0.106				95% H-UCL (KM -Log)	41.05
1103	3				(logged)	0.821			959	% Critical H Value (KM-Log)	2.106
1104			KM Standar	d Error of Mean	(logged)	0.106					
1105	5					D1 /0 0					
1106	6		DI /0 N	la ma al		DL/2 S	atistics		DI /O I o	. Tues of success	
1107			DL/2 N			20.2			DL/2 LO(g-Transformed	2.142
1108				Mean in Origin		30.3				Mean in Log Scale	3.143
1109			050/ +11	SD in Origin		19.87 34.55				SD in Log Scale 95% H-Stat UCL	0.875 43.36
1110				s not a recommo	,,		ed for comma	ricono on a	l historical -		43.30
1111			DL/Z R	s not a recomm	ended me	uioa, provia	eu ior compa	risoris aric	i nistoricai i	easons	
1112				Nz	nnarame	tric Dietribut	ion Free UCL	Statistics			
1113				Data do not fo					ance I evel		
1114				Data do not io	now a Dis	SCETTIBLE DIS		70 Olgrinio	arice Level		
1115						Suggested	UCL to Use				
1116			95	% KM (Chebysh		41.39					
1117				, ,	,						
1118 1119		Note: Sugges	stions regard	ing the selection	n of a 95%	UCL are pr	ovided to hel	p the user	to select th	e most appropriate 95% UCL	
1120			R	ecommendation	ns are bas	ed upon dat	a size, data d	distribution	, and skewi	ness.	
1121		These recor	mmendations	are based upor	n the resu	Its of the sin	nulation studi	es summa	rized in Sin	gh, Maichle, and Lee (2006).	
1122	I I a	wever, simu	lations results	s will not cover a	all Real W	orld data se	ts; for additio	nal insight	the user m	ay want to consult a statistici	an.
1123											
			-								
1124	Se										
1124 1125	Se										
	Se					General	Statistics				
1125	Se		Total	Number of Obs		55	Statistics		Num	ber of Distinct Observations	17
1125 1126	Se			Number o	f Detects	55 1	Statistics			Number of Non-Detects	54
1125 1126 1127	Se				f Detects	55	Statistics				
1125 1126 1127 1128	Se		Nu	Number o	f Detects t Detects	55 1 1			Num	Number of Non-Detects ber of Distinct Non-Detects	54
1125 1126 1127 1128 1129	Se		Nu ly one distinc	Number o	f Detects t Detects s detected	55 1 1 !! ProUCL (c	r any other so		Num	Number of Non-Detects aber of Distinct Non-Detects a used on such a data set!	16
1125 1126 1127 1128 1129 1130	Se		Nu ly one distinc	Number o	f Detects t Detects s detected	55 1 1 !! ProUCL (c	r any other so		Num	Number of Non-Detects ber of Distinct Non-Detects	16
1125 1126 1127 1128 1129 1130 1131	V It is sugge		Nu ly one distinc	Number on the state of Distinct of Distinc	f Detects t Detects s detected s determin	55 1 1 !! ProUCL (d	or any other so	to estimate	Num nould not be environme	Number of Non-Detects aber of Distinct Non-Detects a used on such a data set!	16
1125 1126 1127 1128 1129 1130 1131 1132	Se V It is sugge		Nu ly one distinc	Number on the state of Distinct of Distinc	f Detects t Detects s detected s determin	55 1 1 !! ProUCL (d	r any other so	to estimate	Num nould not be environme	Number of Non-Detects aber of Distinct Non-Detects a used on such a data set!	16
1125 1126 1127 1128 1129 1130 1131 1132 1133	V It is sugge		Nu ly one distinc	Number on the state of Distinct of Distinc	f Detects t Detects s detected s determin	55 1 1 !! ProUCL (d	or any other so	to estimate	Num nould not be environme	Number of Non-Detects aber of Distinct Non-Detects a used on such a data set!	16
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136	Se V It is sugge		Nu ly one distinc	Number on the state of Distinct of Distinc	f Detects t Detects s detected s determin	55 1 1 !! ProUCL (d	or any other so	to estimate	Num nould not be environme	Number of Non-Detects aber of Distinct Non-Detects a used on such a data set!	16
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136	V It is sugge		Nu ly one distinc	Number on the state of Distinct of Distinc	f Detects t Detects s detected s determin	55 1 1 !! ProUCL (d	or any other so	to estimate	Num nould not be environme	Number of Non-Detects aber of Distinct Non-Detects a used on such a data set!	16
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138	V It is sugge		Nu ly one distinc	Number on the state of Distinct of Distinc	f Detects t Detects s detected s determin	55 1 1 I! ProUCL (coned by the F	or any other so Project Team	to estimate	Num nould not be environme	Number of Non-Detects aber of Distinct Non-Detects a used on such a data set!	16
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138	V It is sugge		Nu ly one distinc alternative sit	Number of metal number of Distinct data value was e specific value	f Detects t Detects s detected s determine	55 1 1 I! ProUCL (oned by the Formula for variable	or any other so Project Team	to estimate	Num nould not be environme	Number of Non-Detects her of Distinct Non-Detects e used on such a data set! ental parameters (e.g., EPC,	54 16 BTV).
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139	V It is sugge		Nu ly one distinc alternative sit	Number of Distinct t data value was e specific value Th	f Detects t Detects s detected s determine e data set	55 1 1 I! ProUCL (coned by the Formation of the second of	or any other so Project Team	to estimate	Num nould not be environme	Number of Non-Detects aber of Distinct Non-Detects be used on such a data set! ental parameters (e.g., EPC,	54 16 BTV).
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140	V It is sugge		Nu one distinct alternative sit	Number of Distinct In data value was e specific value Th Number of Observations of Observat	f Detects t Detects s detected s determine e data set ervations f Detects	55 1 1 I! ProUCL (coned by the First for variable General and the first form of the	or any other so Project Team	to estimate	Num	Number of Non-Detects aber of Distinct Non-Detects be used on such a data set! ental parameters (e.g., EPC, ber of Distinct Observations Number of Non-Detects	54 16 BTV).
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141	V It is sugge		Nu one distinct alternative sit	Number of Distinct t data value was e specific value Th	f Detects t Detects s detected s determine e data set ervations f Detects	55 1 1 I! ProUCL (coned by the Formation of the second of	or any other so Project Team	to estimate	Num	Number of Non-Detects aber of Distinct Non-Detects be used on such a data set! ental parameters (e.g., EPC,	54 16 BTV).
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140	V It is sugge	sted to use a	Nu one distinct alternative sit	Number of Distinct t data value was e specific value Th Number of Obstantial Number of Distinct	f Detects t Detects s detected s determine e data set ervations f Detects t Detects	55 1 1 1 !! ProUCL (coned by the Final section of the section of t	or any other so Project Team Se was not p	to estimate	Num nould not be e environme	Number of Non-Detects aber of Distinct Non-Detects be used on such a data set! ental parameters (e.g., EPC, ber of Distinct Observations Number of Non-Detects	54 16 BTV).

	A B C D E It is suggested to use alternative site specific values determine	F ned by the F	G Project Team	H to estimate envir	J K	PC. I	L BTV).
1145						,	
1146 1147	The data set	t for variable	Ag was not p	processed!			
1148							
1149							
1150	V						
1151							
1152		General	Statistics				
1153	Total Number of Observations	61			Number of Distinct Observation	ons	59
1154	Number of Detects	60			Number of Non-Dete	ects	1
1155	Number of Distinct Detects	58			Number of Distinct Non-Dete	ects	1
1156	Minimum Detect	8.4			Minimum Non-De	tect	1
1157	Maximum Detect	134			Maximum Non-De		1
1158	Variance Detects	943.2			Percent Non-Dete	ects	1.639%
1159	Mean Detects	59.51			SD Dete		30.71
1160	Median Detects	63.45			CV Dete		0.516
1161	Skewness Detects	0.0346			Kurtosis Dete		-0.477
1162	Mean of Logged Detects	3.888			SD of Logged Dete	ects	0.725
1163							
1164			t on Detects (
1165	Shapiro Wilk Test Statistic	0.954			t on Detected Observations C		
1166	5% Shapiro Wilk P Value Lilliefors Test Statistic	0.0535	De		ear Normal at 5% Significance illiefors GOF Test	Lev	eı
1167	5% Lilliefors Critical Value	0.0928	Do		ear Normal at 5% Significance	. Lov	ol.
1168	Detected Data a				ear Normal at 5% Significance	Lev	eı
1169	Detected Data a	ірреаі іченн	iai at 0 /0 Oigi	illicarios Level			
1170	Kaplan-Meier (KM) Statistics using	a Normal Cr	itical Values a	and other Nonpa	rametric UCLs		
1171	KM Mean	58.55			KM Standard Error of M	ean	4.016
1172	KM SD	31.1			95% KM (BCA) L		64.99
1173 1174	95% KM (t) UCL	65.26		959	% KM (Percentile Bootstrap) U		65.22
1175	95% KM (z) UCL	65.15			95% KM Bootstrap t L	JCL	65.57
1176	90% KM Chebyshev UCL	70.6			95% KM Chebyshev L	ICL	76.05
1177	97.5% KM Chebyshev UCL	83.63			99% KM Chebyshev L	ICL	98.51
1178			II.				
1179	Gamma GOF	Tests on De	tected Obser	vations Only			
1180	A-D Test Statistic	2.023		Ander	son-Darling GOF Test		
1181	5% A-D Critical Value	0.76	Detecte	ed Data Not Gam	nma Distributed at 5% Signific	ance	Level
1182	K-S Test Statistic	0.161			ogorov-Smirnov GOF		
1183	5% K-S Critical Value	0.116			nma Distributed at 5% Signific	ance	Level
1184	Detected Data Not G	amma Distr	ibuted at 5%	Significance Lev	rel		
1185			<u> </u>				
1186			Detected Da	ta Unly	la man medical de la constantia	. E.	0.554
1187	k hat (MLE)	2.673			k star (bias corrected M		2.551
1188	Theta hat (MLE)	22.26 320.8			Theta star (bias corrected M	- 1	23.33 306.1
1189	nu hat (MLE) Mean (detects)	320.8 59.51			nu star (bias correct	eu)	300. I
1190	weari (detects)	10.80					
1191	Gamma ROS	Statistics us	ing Imputed I	Von-Detects			
1192	GROS may not be used when data so				tions at multiple DLs		
1193	GROS may not be used when kstar of detects is s			•	•	20)	
1194	For such situations, GROS r					/	
1195	This is sense:						
1196	3 33933.	,					

1197	A B C D E For gamma distributed detected data, BTVs a	F and UCLs ma	G H I J K ay be computed using gamma distribution on KM estimates	L
1198	Minimum	8.4	Mean	58.74
1199	Maximum	134	Median	62.9
1200	SD	31.03	CV	0.528
1201	k hat (MLE)	2.567	k star (bias corrected MLE)	2.451
1202	Theta hat (MLE)	22.89	Theta star (bias corrected MLE)	23.97
1203	nu hat (MLE)	313.1	nu star (bias corrected)	299.1
1204	Adjusted Level of Significance (β)	0.0461		
1205	Approximate Chi Square Value (299.05, α)	260	Adjusted Chi Square Value (299.05, β)	259.1
1206	95% Gamma Approximate UCL (use when n>=50)	67.57	95% Gamma Adjusted UCL (use when n<50)	67.8
1207		I	1	
1208	Estimates of G	amma Parar	meters using KM Estimates	
1209	Mean (KM)	58.55	SD (KM)	31.1
1210	Variance (KM)	967.5	SE of Mean (KM)	4.016
1211	k hat (KM)	3.543	k star (KM)	3.38
1212	nu hat (KM)	432.2	nu star (KM)	412.3
1213	theta hat (KM)	16.53	theta star (KM)	17.32
1214	80% gamma percentile (KM)	82.33	90% gamma percentile (KM)	101.3
1215	95% gamma percentile (KM)	118.8	99% gamma percentile (KM)	156.6
1216		-		
1217	Gamm	•	eier (KM) Statistics	
1218	Approximate Chi Square Value (412.31, α)	366.2	Adjusted Chi Square Value (412.31, β)	365.2
1219	95% Gamma Approximate KM-UCL (use when n>=50)	65.91	95% Gamma Adjusted KM-UCL (use when n<50)	66.1
1220		-		
1221	-		etected Observations Only	
1222	Shapiro Wilk Approximate Test Statistic		Shapiro Wilk GOF Test	
1223	5% Shapiro Wilk P Value		Detected Data Not Lognormal at 5% Significance Lev	el
1224	Lilliefors Test Statistic	0.197	Lilliefors GOF Test	
1225	5% Lilliefors Critical Value	0.114	Detected Data Not Lognormal at 5% Significance Lev	el
1226	Detected Data I	Not Lognorm	nal at 5% Significance Level	
1227				
1228			Jsing Imputed Non-Detects	
	_			
1229	Mean in Original Scale	58.66	Mean in Log Scale	3.858
1229 1230	Mean in Original Scale SD in Original Scale	58.66 31.16	SD in Log Scale	0.754
	Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data)	58.66 31.16 65.33	SD in Log Scale 95% Percentile Bootstrap UCL	0.754 65.17
1230	Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL	58.66 31.16 65.33 65.12	SD in Log Scale	0.754
1230 1231	Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL	58.66 31.16 65.33	SD in Log Scale 95% Percentile Bootstrap UCL	0.754 65.17
1230 1231 1232	Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	58.66 31.16 65.33 65.12 76.9	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	0.754 65.17
1230 1231 1232 1233	Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of	58.66 31.16 65.33 65.12 76.9	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL Pata and Assuming Lognormal Distribution	0.754 65.17 65.81
1230 1231 1232 1233 1234	Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged)	58.66 31.16 65.33 65.12 76.9 on Logged D	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL Pata and Assuming Lognormal Distribution KM Geo Mean	0.754 65.17 65.81 45.78
1230 1231 1232 1233 1234 1235	Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged)	58.66 31.16 65.33 65.12 76.9 on Logged D 3.824 0.867	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL Pata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log)	0.754 65.17 65.81 45.78 2.148
1230 1231 1232 1233 1234 1235 1236	Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)	58.66 31.16 65.33 65.12 76.9 on Logged D 3.824 0.867 0.112	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL Pata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	0.754 65.17 65.81 45.78 2.148 84.8
1230 1231 1232 1233 1234 1235 1236 1237	Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM SD (logged) KM SD (logged)	58.66 31.16 65.33 65.12 76.9 on Logged D 3.824 0.867 0.112 0.867	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL Pata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log)	0.754 65.17 65.81 45.78 2.148
1230 1231 1232 1233 1234 1235 1236 1237 1238	Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged)	58.66 31.16 65.33 65.12 76.9 on Logged D 3.824 0.867 0.112 0.867	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL Pata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	0.754 65.17 65.81 45.78 2.148 84.8
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged)	58.66 31.16 65.33 65.12 76.9 on Logged D 3.824 0.867 0.112 0.867 0.112	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL Pata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	0.754 65.17 65.81 45.78 2.148 84.8
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242	Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM SD (logged) KM SD (logged)	58.66 31.16 65.33 65.12 76.9 on Logged D 3.824 0.867 0.112 0.867 0.112	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL Pata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	0.754 65.17 65.81 45.78 2.148 84.8
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged)	58.66 31.16 65.33 65.12 76.9 on Logged D 3.824 0.867 0.112 0.867 0.112	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL Pata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	0.754 65.17 65.81 45.78 2.148 84.8 2.148
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244	Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) CDL/2 Normal	58.66 31.16 65.33 65.12 76.9 Day Logged D 3.824 0.867 0.112 0.867 0.112 DL/2 S 58.54	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL Pata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) Mean in Log Scale	0.754 65.17 65.81 45.78 2.148 84.8 2.148
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245	Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM STandard Error of Mean (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) SD (logged) DL/2 Normal Mean in Original Scale SD in Original Scale	58.66 31.16 65.33 65.12 76.9 on Logged D 3.824 0.867 0.112 0.867 0.112 DL/2 S 58.54 31.38	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL RM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) SD in Log Scale SD in Log Scale	0.754 65.17 65.81 45.78 2.148 84.8 2.148
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246	Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale	58.66 31.16 65.33 65.12 76.9 Day Logged D 3.824 0.867 0.112 0.867 0.112 DL/2 S 58.54 31.38 65.25	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL Pata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) Pataistics DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL	0.754 65.17 65.81 45.78 2.148 84.8 2.148
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247	Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) SD (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) SD (logged) KM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me	58.66 31.16 65.33 65.12 76.9 Day Logged D 3.824 0.867 0.112 0.867 0.112 DL/2 S 58.54 31.38 65.25	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL RM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) SD in Log Scale SD in Log Scale	0.754 65.17 65.81 45.78 2.148 84.8 2.148
1230 1231 1232 1233 1234 1235 1236 1237 1238 1240 1241 1242 1243 1244 1245 1246	Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates of KM Mean (logged) KM SD (logged) SD (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) SD (logged) KM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me	58.66 31.16 65.33 65.12 76.9 Day Logged D 3.824 0.867 0.112 0.867 0.112 DL/2 S 58.54 31.38 65.25	SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL Pata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) Pataistics DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL	0.754 65.17 65.81 45.78 2.148 84.8 2.148

1010	A B C D E	F etric Distributi	G H I J K ON Free UCL Statistics	L											
1249	·		tributed at 5% Significance Level												
1250															
1251		Suggested I	UCL to Use												
1252 1253	95% KM (t) UCL	65.26													
1254			I												
1255	Note: Suggestions regarding the selection of a 95%	6 UCL are pr	ovided to help the user to select the most appropriate 95% UCL												
1256	Recommendations are base	sed upon dat	a size, data distribution, and skewness.												
1257	These recommendations are based upon the resu	ılts of the sim	nulation studies summarized in Singh, Maichle, and Lee (2006).												
1258	However, simulations results will not cover all Real W	orld data set	ts; for additional insight the user may want to consult a statisticia	an.											
1259															
1260															
1261	Zn														
1262															
1263		General S	Statistics												
1264	Total Number of Observations	61	Number of Distinct Observations	59											
1265			Number of Missing Observations	0											
1266	Minimum	4.3	Mean	38.53											
1267	Maximum	109	Median	36.1											
1268	SD	22.39	Std. Error of Mean	2.866											
1269	Coefficient of Variation	0.581	Skewness	1.142											
1270															
1271		Normal G	OF Test												
1272	Shapiro Wilk Test Statistic	0.908	Shapiro Wilk GOF Test												
1273	5% Shapiro Wilk P Value	1.0600E-4	Data Not Normal at 5% Significance Level												
1274	Lilliefors Test Statistic	0.166	Lilliefors GOF Test												
1275	59/ Lilliofors Critical Value 0.112 Data Not Normal at 59/ Significance Level														
1276	Data Normal at 5% Significance Lovel														
1277															
1278		suming Norm	nal Distribution												
1279	95% Normal UCL		95% UCLs (Adjusted for Skewness)												
1280	95% Student's-t UCL	43.32	95% Adjusted-CLT UCL (Chen-1995)	43.69											
1281			95% Modified-t UCL (Johnson-1978)	43.39											
1282															
1283		Gamma C													
1284	A-D Test Statistic	0.716	Anderson-Darling Gamma GOF Test												
1285	5% A-D Critical Value	0.759	Detected data appear Gamma Distributed at 5% Significance	ce Level											
1286	K-S Test Statistic	0.105	Kolmogorov-Smirnov Gamma GOF Test	a Laval											
1287	5% K-S Critical Value	0.115	Detected data appear Gamma Distributed at 5% Significance	e Level											
1288	Detected data appear	damina Dis	tributed at 5% Significance Level												
1289		Gamma	Statistics												
1290	k hat (MLE)	2.888	k star (bias corrected MLE)	2.757											
1291	Theta hat (MLE)	13.34	Theta star (bias corrected MLE)	13.98											
1292	nu hat (MLE)	352.3	nu star (bias corrected)	336.3											
1293	MLE Mean (bias corrected)	38.53	MLE Sd (bias corrected)	23.2											
1294	mee mean (bias corrected)	55.55	Approximate Chi Square Value (0.05)	294.8											
1295	Adjusted Level of Significance	0.0461	Adjusted Chi Square Value	293.9											
1296	, rejusted Level of dignificance	0.0401	/ Ajastea Oni Oqualo Value												
1297	Ası	sumina Gam	ma Distribution												
1298	95% Approximate Gamma UCL (use when n>=50)		95% Adjusted Gamma UCL (use when n<50)	44.09											
1299	., ,	.0.00	observation administration (and which it soot)												
1300															

1301	A B C D E	F Lognormal	G GOF Test	Н	I J K	L					
1301	Shapiro Wilk Test Statistic	0.942		Shapiro	Wilk Lognormal GOF Test						
1303	5% Shapiro Wilk P Value	0.0102									
1304	Lilliefors Test Statistic	0.138		Lilliefo	ors Lognormal GOF Test						
1305	5% Lilliefors Critical Value	0.113		Data Not Log	normal at 5% Significance Level						
1306	Data Not L	ognormal at	5% Significan	ice Level							
1307											
1308		Lognormal	l Statistics								
1309	Minimum of Logged Data	1.459			Mean of logged Data	3.468					
1310	Maximum of Logged Data	SD of logged Data	0.659								
1311					I						
1312	Assu	ıming Logno	rmal Distributi	ion							
1313	95% H-UCL 47.14 90% Chebyshev (MVUE) UCL										
1314	95% Chebyshev (MVUE) UCL	55.55			97.5% Chebyshev (MVUE) UCL	62.42					
1315	99% Chebyshev (MVUE) UCL	75.91									
1316											
1317	Nonparame	tric Distribut	ion Free UCL	Statistics							
1318	Data appear to follow a D	Discernible D	Distribution at \$	5% Significand	e Level						
1319											
1320	Nonpar	rametric Dist	ribution Free I	UCLs							
1321	95% CLT UCL	43.24			95% Jackknife UCL	43.32					
1322	95% Standard Bootstrap UCL	43.08			95% Bootstrap-t UCL	43.87					
1323	95% Hall's Bootstrap UCL	43.83			95% Percentile Bootstrap UCL	43.32					
1324	95% BCA Bootstrap UCL	43.23									
1325	90% Chebyshev(Mean, Sd) UCL	95% Chebyshev(Mean, Sd) UCL	51.02								
1326	97.5% Chebyshev(Mean, Sd) UCL	56.43			99% Chebyshev(Mean, Sd) UCL	67.05					
1327											
1328		Suggested	UCL to Use								
1329	95% Approximate Gamma UCL	43.95									
1330											
1331	Note: Suggestions regarding the selection of a 95%	6 UCL are pr	ovided to help	the user to se	elect the most appropriate 95% UCL						
1332	Recommendations are bas	sed upon dat	ta size, data d	istribution, and	l skewness.						
1333	These recommendations are based upon the resu	ılts of the sim	nulation studie	es summarized	in Singh, Maichle, and Lee (2006).						
1334	However, simulations results will not cover all Real W	orld data se	ts; for addition	nal insight the u	user may want to consult a statisticia	ın.					
1335											
1336	Hg										
1337											
1338		General	Statistics								
1339	Total Number of Observations				Number of Distinct Observations	26					
1340	Number of Detects	-			Number of Non-Detects	43					
1341	Number of Distinct Detects	17		Number of Distinct Non-Detects	10						
1342	Minimum Detect	0.04			Minimum Non-Detect	0.06					
1343	Maximum Detect	8			Maximum Non-Detect	0.16					
1344	Variance Detects	Percent Non-Detects	70.49%								
1345	Mean Detects	0.857			SD Detects	1.934					
1346	Median Detects	0.106			CV Detects	2.256					
1347	Skewness Detects	3.342			Kurtosis Detects	12.09					
1348	Mean of Logged Detects	-1.693			SD of Logged Detects	1.624					
1349			1								
1350	Nom	nal GOF Test	t on Detects C	Only							
1351	Shapiro Wilk Test Statistic	0.484		Sh	napiro Wilk GOF Test						
1352	5% Shapiro Wilk Critical Value	0.897	D	etected Data N	lot Normal at 5% Significance Level						
			II.								

1353	Α	В		С	D Lilliefor	s Test	E Statistic	F 0.371	G		Н		l Lilliefor	s GOF	J Test		K	L		
1354				59	% Lilliefors	Critic	cal Value	0.202		De	tected [Data I	Not Nor	mal at §	5% Sign	ificar	nce Leve			
1355						Dete	cted Data	Not Norma	al at 5% Sig	gnific	ance Le	evel								
1356																				
1357	Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs KM Mean 0.292 KM Standard Error of Mean																			
1358				0.292		KM Standard Error of Mean														
1359							KM SD	1.084			0.552									
1360					98	5% KI	/I (t) UCL	0.531				95% KM (Percentile Bootstrap) UCL 0								
1361					95	% KN	l (z) UCL	0.527				95% KM Bootstrap t UCL 1.0								
1362				9	0% KM C	nebys	hev UCL	0.721					0.915							
1363				97.	5% KM C	nebys	hev UCL	1.184						99%	KM Che	bysh	ev UCL	1.714		
1364																				
1365	Gamma GOF Tests on Detected Observations Only																			
1366	A D Test Statistic								2.148 Anderson-Darling GOF Test 0.816 Detected Data Not Gamma Distributed at 5% Significance Level											
1367	5% A D Critical Value																			
1368	K S Tost Statistic								Kolmogorov-Smirnov GOF											
1369			0.217	Detected Data Not Gamma Distributed at 5% Significance Level																
1370	Detected Data Not Gamma Distributed at 5% Significance Level																			
1371																				
1372								Statistics o	n Detected	Data	Only									
1373		k hat (MLE)												•	bias cor		,	0.39		
1374		Theta hat (MLE)											Thet	2.197						
1375	nu hat (MLE) Mean (detects)													nu	star (bia	as coi	rrected)	14.04		
1376				0.857																
1377																				
1378		Gamma ROS Statistics using Imputed Non-Detects																		
1379		GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs																		
1380	GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)																			
1381	For such situations, GROS method may yield incorrect values of UCLs and BTVs This is especially true when the sample size is small.																			
1382																				
1383		For ga	ımma d	istribut	ed detecte			and UCLs n	nay be com	pute	d using	gamn	na distri	bution	on KM e	estima	ates			
1384							Minimum										Mean	0.277		
1385		Maximum															Median	0.01		
1386							SD	1.098									CV	3.966		
1387					_		at (MLE)	0.309						`	bias cor		′	0.305		
1388					T		at (MLE)	0.896		Theta star (bias corrected MLE										
1389							at (MLE)	37.72 0.0461	nu star (bias correcte									37.2		
1390		Adjusted Level of Significance (β)																		
1391		Approximate Chi Square Value (37.20, α)											•		are Val	•		23.98		
1392	9:	5% Gamm	a Appro	oximate	e UCL (us	e whe	n n>=50)	0.425	0.425 95% Gamma Adjusted UCL (use when n<50) 0.4											
1393																				
1394								amma Para 0.292	ameters usi	ng K	M Estim	ates								
1395		Mean (KM)								SD (KM) SE of Mean (KM)								1.084		
1396			1.176							SE o			0.143							
1397			0.0726 8.851									ar (KM)	0.0799							
1398		nu hat (KM)															ar (KM)	9.749		
1399		theta hat (KM)															ar (KM)	3.655		
1400	80% gamma percentile (KM) 95% gamma percentile (KM)														nma pei		` ′	0.692		
1401		1.698					9	9% gar	nma pei	rcenti	ile (KM)	5.175								
1402																				
1403									/leier (KM) S	Statis	stics									
1404	Approximate Chi Square Value (9.75, α							3.786				A	djusted	Chi Sq	uare Va	alue (9.75, β)	3.696		
			•				_				•		-		-					

	A B C D E	F	G H I J K	L
1405	95% Gamma Approximate KM-UCL (use when n>=50)	0.752	95% Gamma Adjusted KM-UCL (use when n<50)	0.77
1406				
1407	<u> </u>		etected Observations Only	
1408	Shapiro Wilk Test Statistic	0.824	Shapiro Wilk GOF Test	
1409	5% Shapiro Wilk Critical Value	0.897	Detected Data Not Lognormal at 5% Significance Level	
1410	Lilliefors Test Statistic	0.242	Lilliefors GOF Test	
1411	5% Lilliefors Critical Value	0.202	Detected Data Not Lognormal at 5% Significance Level	
1412	Detected Data N	lot Lognorm	al at 5% Significance Level	
1413				
1414			Jsing Imputed Non-Detects	
1415	Mean in Original Scale	0.304		-2.538
1416	SD in Original Scale	1.091	SD in Log Scale	1.215
1417	95% t UCL (assumes normality of ROS data)	0.538	95% Percentile Bootstrap UCL	0.554
1418	95% BCA Bootstrap UCL	0.715	95% Bootstrap t UCL	0.992
1419	95% H-UCL (Log ROS)	0.237		
1420				
1421	-		ata and Assuming Lognormal Distribution	
1422	KM Mean (logged)	-2.555		0.0777
1423	KM SD (logged)	1.038	95% Critical H Value (KM-Log)	2.271
1424	KM Standard Error of Mean (logged)	0.145	95% H-UCL (KM -Log)	0.181
1425	KM SD (logged)	1.038	95% Critical H Value (KM-Log)	2.271
1426	KM Standard Error of Mean (logged)	0.145		
1427				
1428		DL/2 St		
1429	DL/2 Normal		DL/2 Log-Transformed	
1430	Mean in Original Scale	0.293		-2.538
1431	SD in Original Scale	1.093	SD in Log Scale	1.049
1432	95% t UCL (Assumes normality)	0.527	95% H-Stat UCL	0.186
1433	DL/2 is not a recommended me	thod, provid	ed for comparisons and historical reasons	
1434				
1435	-		ion Free UCL Statistics	
1436	Data do not follow a Dis	cernible Dis	stribution at 5% Significance Level	
1437		<u> </u>	100	
1438			UCL to Use	
1439	95% KM (Chebyshev) UCL	0.915		
1440	N . O			
1441			rovided to help the user to select the most appropriate 95% UCL.	
1442			ta size, data distribution, and skewness.	
1443			nulation studies summarized in Singh, Maichle, and Lee (2006).	
1444	nowever, simulations results will not cover all Real W	oria aata se	ts; for additional insight the user may want to consult a statistician	l.
1445				

	Α	В	С	D Backgroun	E d Statistics for	F or Data Sets	G with Non-Dete	H ects	I		J	K		L
1		User Sele	cted Options											
2	Dat		Computation	ProUCL 5	12/28/2018 1	0:17:52 AM								
3			From File	WorkSheet										
4		Fı	ıll Precision	OFF										
5			Coefficient	95%										
6			Coverage	95%										
7	Different or	Future K O	bservations	1										
8			Operations	2000										
9	- Number c	л Бооюнар	Орстанона	2000										
10	As culled													
11	As culled													
12						Conorol	Statistics							
13			Total	Number of	Observations		Jiansucs		Nium	har of N	Aiosina I	Observat	iono	
14						-			Num	ber of iv	lissing	Observat	ions	3
15			Numbe		Observations	-								- 0.4
16					er of Detects	-						Non-Det		24
17			Nı		stinct Detects	-			Nun			Non-Det		13
18					nimum Detec							n Non-De		0.6
19					kimum Detec							n Non-De		2.9
20				Varia	nce Detected					F		Non-Det		41.38%
21					ean Detected							SD Dete		0.871
22			Mean	of Detected	Logged Data	a 0.869			5	SD of De	etected	Logged [Data	0.392
23														
24				Cri	tical Values 1	or Backgrou	nd Threshold	Values (BT	√s)					
25			Tole	rance Facto	r K (For UTL)) 2.024					d2n	max (for L	JSL)	3.014
26							-							
27					Norr	nal GOF Tes	t on Detects (Only						
28			S	hapiro Wilk	Test Statistic	0.96			Shapiro	Wilk GO	OF Test	i		
29			5% S	hapiro Wilk	Critical Value	0.933	De	tected Data	a appear N	lormal a	at 5% Si	ignificanc	e Lev	/el
30				Lilliefors	Test Statistic	0.109			Lilliefo	rs GOF	Test			
31			5	% Lilliefors	Critical Value	0.15	De	tected Data	a appear N	lormal a	at 5% Si	ignificanc	e Lev	/el
32				De	etected Data	appear Norm	nal at 5% Sign	nificance Le	evel					
33												-		
34				Kaplan Me	ier (KM) Bac	kground Stat	istics Assumii	ng Normal	Distributio	n				
35					KM Mear	1.883						KM	1 SD	1.075
36				95% UTL95	5% Coverage	e 4.059					959	% KM UP	L (t)	3.696
37				90% KM	Percentile (z)) 3.261				95	5% KM	Percentile	e (z)	3.651
38				99% KM	Percentile (z)) 4.384					(95% KM	USL	5.123
39														
40				DL/2 Subs	stitution Back	ground Stati	stics Assumin	g Normal D	Distribution	<u> </u>				
41					Mear	1.835							SD	1.108
42				95% UTL95	5% Coverage	e 4.079						95% UP	L (t)	3.704
43					Percentile (z)						95%	Percentile		3.658
					Percentile (z)	,						95%		5.176
44			DL/2 is r			,	vided for com	parisons a	nd historica	al reaso	ns			
45														
46				(Gamma GOF	Tests on De	etected Obser	vations On	ly					
47	 				Test Statistic				Anderson-l	Darling (GOF T	est		
48					Critical Value		Detected	d data appe		_			ifican	ce l evel
49	-				Test Statistic		20.00.00		Kolmogoro					20 20001
50	<u> </u>				Critical Value		Detected	d data appe					ifican	ce l evel
51							stributed at 59			טוווטטים ג	aicu al	- Olyili	iicaiii	JO EGVEI
52				Derected	a aara ahhea	- Gaillia Di	outou at 37	o Giginileal	IOG LEVEI					

	Α		В		С	\blacksquare		D		E		F	G		Н			I		J		ŀ	(L
53										Gamma	Statis	tics on	Detect	ed Dat	a Only									
54									k ł	hat (MLE		.607		ou Dui	u 01y			k	star	(bias d	corr	ected	MIF)	6.956
55								The		hat (MLE		.335					7			(bias o			1	0.366
56										hat (MLE										star (- 1	473
57						MLE	= Me			corrected	`	.549								otal (Diac		octou)	
58										corrected		.967				9!	5% F	Perce	ntile	of Chis	sau	are (2	kstar)	23.57
59								(,										1		,	
60 61								-	Gan	nma ROS	S Statis	stics us	ing Imp	uted N	lon-De	ects								
62				GR	≀OS n	nay n	not be			nen data							rvatio	ons a	t mul	tiple D	Ls			
63		GF	ROS ma	ay not	be u	sed v	when	kstar	r of c	detects is	small	such a	s <1.0,	espec	ially wh	en the	san	nple	size i	s smal	ll (e	.g., <1	15-20)	
64						For	such	situa	tion	s, GROS	metho	d may	yield ir	correc	t value:	s of U	CLs	and E	3TVs					
65									This	s is espec	ially tr	ue whe	n the s	ample	size is	small.								
66			For ga	ımma	distri	ibute	d de	tected	d dat	ta, BTVs	and U	CLs ma	ay be co	mpute	ed using	gamı	ma d	listrib	ution	on KN	√l es	stimat	es	
67										Minimum	0.	.371											Mean	1.952
68									ľ	Maximum	4.	.1										М	edian	1.706
69										SE	1.	.001											CV	0.513
70									k ł	hat (MLE	3.	.701						k	star	(bias d	corr	ected	MLE)	3.521
71								The	eta ł	hat (MLE	0.	.528					7	Γheta	star	(bias d	corr	ected	MLE)	0.555
72									nu ł	hat (MLE	429	9.3							nu	star (bias	s corre	ected)	408.4
73						MLE	∃ Ме	an (bi	ias c	corrected) 1.	.952							ML	E Sd (bias	s corre	ected)	1.04
74				95%	6 Per	centil	le of	Chisc	quar	e (2kstar) 14	1.13								ć	90%	6 Perc	entile	3.347
75								95	5% F	Percentile	3.	.917								9	9%	Perce	entile	5.141
76					Th	ne foll	lowir	ng sta	tistic	cs are co	mputed	d using	Gamm	a ROS	Statis	ics on	Imp	uted	Data				*	
77						Up	per l	Limits	usi	ng Wilsor	n Hilfer	ty (WH	l) and F	lawkin	s Wixle	y (HW) Me	ethod	S					
78										WH	Н۷	V										WH	1	HW
79	95% Ap	oprox.	Gamma	a UTI						4.531		.658				95%	6 Ap	prox.	Gam	ıma Ul	PL	3.9	951	4.022
80					95	% Ga	amm	a USI	L	6.55	6.	.961												
81																								
82								Е		nates of G			neters (ısing K	M Esti	mates								
83										ean (KM		.883											(KM)	1.075
84								V		nce (KM)		.156								SE		Mean		0.151
85										hat (KM)		.067											(KM)	2.92
86										hat (KM												iu star		338.8
87										hat (KM		.614							0/				(KM)	0.645
88							-			ntile (KM		.694							-	mma į			` ′	3.36
89						J5% (gamı	rna pe	erce	ntile (KM) 3.	.982						99	% ga	mma į	perd	centile	(KIM)	5.333
90						The f	olloss	ina at	atio.	tics are c	omn: +	ad usi-	a co~-	na dia	ributio-	ו מממי	ZNA ~	otim-	atoc					
91										นcs are c ng Wilsor														
92							'hei l	LiiillS		MH	HV		ı, aılu F	awkii):	S VVIXIE	y (17 0 0) IVIE	ou iou:	J		-	WH	4	HW
93	95% An	nnrov	Gamma	a I ITI	with	1 95%	6 Co	/erag		4.806		v .984				Q50	<u>ά Δη</u>	nrov	Gam	ıma Ul	PI		125	4.224
94	00 /0 Ap	opiox.						centile		4.046		.904				3J /				ıma U			226	7.81
95				_ , 0 1 (1	G ui			J-11111			7.							2070	Juil			, . 2		
96								ı	.oan	ormal G0)F Tes	t on De	etected	Obser	vations	Only								
97						Sha	apirc			t Statistic		.921					Shap	iro W	ilk G	OF Te	st			
98					5%					ical Value		.933			Data							ince L	evel	
99										t Statistic		.133					-			Test				
100						5%				ical Value		.15		Dete	cted Da	ta apr						ignific	ance L	evel
101										appear A			 Lognorr											
102																								
103 104			E	Back	groun	ıd Lor	gnor	mal R	os	Statistics	Assur	ming Lo	ognorm	al Dist	ribution	Using	j lmr	outed	Non-	-Detec	ts			
104				**								5 -												

	Α	В	С	D	E	F	G	Н		J	K	L
105					riginal Scale	1.975					in Log Scale	0.561
106					riginal Scale	0.97					in Log Scale	0.496
107					% Coverage	4.78			95%	BCA UTL95		3.9
108			95% Bootstra	ıp (%) UTL95		3.93					95% UPL (t)	4.043
109					Percentile (z)	3.308				95% F	Percentile (z)	3.961
110				99% F	Percentile (z)	5.552					95% USL	7.808
111												
112			Statis	stics using KN	VI estimates o	on Logged D	ata and Ass	uming Logno	ormal Distrib	ution		
113				KM Mean of I	Logged Data	0.441		959	% KM UTL (I	_ognormal)95	% Coverage	5.787
114				KM SD of I	Logged Data	0.649			ć	95% KM UPL	(Lognormal)	4.647
115			95% KM	Percentile L	ognormal (z)	4.523			Ç	95% KM USL	(Lognormal)	11.01
116							II.					
117				Backg	round DL/2 S	Statistics Ass	suming Logn	ormal Distrib	bution			
118				Mean in O	riginal Scale	1.835				Mean	in Log Scale	0.385
119				SD in O	riginal Scale	1.108				SD	in Log Scale	0.72
120				95% UTL95	% Coverage	6.319					95% UPL (t)	4.954
121				90% F	Percentile (z)	3.701				95% F	Percentile (z)	4.808
122				99% F	Percentile (z)	7.856					95% USL	12.89
123			DL/2 is n	ot a Recomm	nended Metho	od. DL/2 pro	vided for cor	nparisons ar	nd historical	reasons.		
124												
125				No	nparametric	Distribution	Free Backgr	ound Statisti	ics			
126				Data appea	r to follow a D	Discernible D	distribution a	t 5% Signific	ance Level			
127												
128			Nonpara	metric Upper	Limits for BT	Vs(no distin	ction made l	oetween dete	ects and nor	detects)		
129				Order	of Statistic, r	57			959	% UTL with95	% Coverage	3.9
130		Α	pprox, f used	to compute a	achieved CC	1.5	Approxima	ite Actual Co	onfidence Co	efficient achi	eved by UTL	0.793
131	Approxir	nate Sample	e Size neede	d to achieve :	specified CC	93					95% UPL	3.9
132					95% USL	4.1				95% KM Che	byshev UPL	6.61
133							ı.					
134		Note: The	use of USL	tends to yield	l a conservati	ive estimate	of BTV, esp	ecially when	the sample	size starts ex	ceeding 20.	
135		Therefore	e, one may u	se USL to est	timate a BTV	only when t	he data set r	epresents a	background	data set free	of outliers	
136				and consis	sts of observa	ations collect	ed from clea	n unimpacte	ed locations.			
137		Т	he use of US	SL tends to pr	ovide a balar	nce between	false positiv	es and false	e negatives p	provided the d	ata	
138		re	presents a b	ackground da	ata set and w	hen many o	nsite observa	ations need t	to be compa	red with the E	BTV.	
139												
												

	АВС	U	<u> </u>	ı	G	П	ı	J	n.	L
1	Wilcoxon-M	ann-Whitney	Sample 1 vs	s Sample 2 C	Comparison 1	est for Data	Sets with N	on-Detects		
2										
3	User Selected Options		2100/22:=:							
4	Date/Time of Computation	ProUCL 5.12		1:54:5/ AM						
5	From File	WorkSheet.:	xIS							
6	Full Precision	OFF								
7	Confidence Coefficient	95%	/\d!:-	d= 0a)	(Fa 1)				
8	Selected Null Hypothesis	-			2 Mean/Medi					
9	Alternative Hypothesis	Sample 1 M	ean/Median	> Sample 2	Mean/Media	II				
10										
11	Sample 1 Data: As culled									
12	Sample 1 Data: As culled Sample 2 Data: As Site									
13	oampie z Data. As Site									
14		Raw Statistics	2							
15	<u>'</u>		Sample 1	Sample 2						
16	Number of		58	61						
17	Number of Missing Ob		3	0						
18	Number of No		24	24						
19	Number of D		34	37						
20	Minimum N		0.6	0.6						
21	Maximum N		2.9	2.9						
22	Percent No.		41.38%	39.34%						
23		um Detect	0.97	0.97						
24 25		um Detect	4.1	8						
25 26		of Detects	2.549	2.91						
27	Median	of Detects	2.6	2.7						
28	SD	of Detects	0.871	1.513						
29					1					
30	WMW test is meant	for a Single D	etection Lin	nit Case						
31	Use of Gehan or T-W test is sugge	sted when m	ultiple detec	tion limits are	e present					
32	All observations <= 2	2.9 (Max DL) a	are ranked ti	he same						
33										
34	Wilcoxon-Ma	ann-Whitney ((WMW) Test	t						
35										
36	H0: Mean/Median of Sample 1 <= M	ean/Median c	f Sample 2							
37										
38	Sample 1 Rank									
39	Standardized \									
40		Mean (U)	1769							
41		(U) - Adj ties	188							
42	Approximate U-Stat Critical		1.645							
43	P-Value (Adjus	sted for Ties)	0.727							
44										
45	Conclusion with Alpha = 0.05									
46	Do Not Reject H0, Conclude Sam	ple 1 <= Sam	ple 2							
47	P-Value >= alpha (0.05)									
48										

Α

В

С

D

Ε

F

G

Н

J

K

	Α	В	С	D	E	F	G	Н		J	K	L
1			Wilcoxon-Ma	ann-Whitney	Sample 1 v	s Sample 2 (Comparison 1	Test for Data	Sets with N	Non-Detects		
2												
3			cted Options									
4	Date	te/Time of Co		ProUCL 5.1		1:54:57 AM						
5				WorkSheet.	xls ———							
6				OFF								
7		Confidence		95%								
8	l	elected Null I		-		-	2 Mean/Medi					
9		Alternative I	Hypothesis	Sample 1 M	ean/Median	> Sample 2	Mean/Media	n 				
10												
11												
12		ata: As culle	Đị.									
13	Sample 2 Da	ata: As Site										
14												
15			F	Raw Statistic		Ta						
16					Sample 1	Sample 2						
17			Number of \		58	61						
18			of Missing Obs		3	0						
19			Number of No		24	24						
20			Number of De		34	37						
21			Minimum N		0.6	0.6						
22			Maximum N		2.9	2.9						
23			Percent No		41.38%	39.34%						
24				um Detect	0.97	0.97						
25				um Detect	4.1	8						
26				of Detects	2.549	2.91						
27				of Detects	2.6	2.7						
28			SD	of Detects	0.871	1.513						
29												
30			est is meant f	-								
31	Use of Gel		test is sugges		•		e present					
32		All obser	rvations <= 2.	.9 (Max DL) a	are ranked t	he same						
33												
34			Wilcoxon-Ma	nn-Whitney	(WMW) Tes	t						
35												
36	H0: Mean/M	ledian of Sai	mple 1 <= Me	∍an/Median o	of Sample 2							
37												
38			mple 1 Rank									
39		St	tandardized V									
40				Mean (U)								
41				(U) - Adj ties								
42	Арр		I-Stat Critical									
43		P-	-Value (Adjus	ted for Ties)	0.727							
44												
45		with Alpha =										
46	l	-	onclude Samp	ole 1 <= Sam	ple 2							
47	P-Value >	>= alpha (0.0)5)									
48												

2					Detects				
3	User Selected Options								
	Date/Time of Computation	ProUCL 5.13/1/2018 3:09	9:51 PM						
4	From File	WorkSheet.xls							
5	Full Precision	OFF							
6	Confidence Coefficient	95%							
7	Number of Bootstrap Operations	2000							
8	Number of Bootstrap Operations	2000							
9									
10	Pb DTTP All Depths								
	го отте Апоерша								
12			General S	Statiation					
13	Taial	No make a ref Observations	34	Statistics		Niaala a	u of Diotional	Observations	31
14	Total	Number of Observations	34						
15			0.0			Number	of Missing (Observations	0
16		Minimum	2.2					Mean	11.92
17		Maximum	70.3					Median	9.05
18		SD	12.32				Std. E	Frror of Mean	2.113
19		Coefficient of Variation	1.033					Skewness	3.64
20									
21			Normal G	OF Test					
22	S	Shapiro Wilk Test Statistic	0.559		\$	Shapiro Wi	lk GOF Test		
23	5% S	hapiro Wilk Critical Value	0.933		Data Not	Normal at	5% Significa	nce Level	
24		Lilliefors Test Statistic	0.38			Lilliefors	GOF Test		
25	5	% Lilliefors Critical Value	0.15		Data Not	Normal at	5% Significa	nce Level	
26		Data Not	Normal at 59	% Significance	Level				
27									
28		Ass	suming Norm	nal Distribution					
29	95% No	ormal UCL			95% L	ICLs (Adju	sted for Ske	wness)	
30		95% Student's-t UCL	15.5		9:	5% Adjuste	ed-CLT UCL	(Chen-1995)	16.81
31					9	5% Modifi	ed-t UCL (Jo	hnson-1978)	15.72
32		1							
33			Gamma G	OF Test					
34		A-D Test Statistic	2.931		Anderse	on-Darling	Gamma GO	F Test	
35		5% A-D Critical Value	0.76	Data	Not Gamm	na Distribut	ed at 5% Sig	gnificance Leve	el
36		K-S Test Statistic	0.297		Kolmogo	ov-Smirno	v Gamma G	OF Test	
37		5% K-S Critical Value	0.153	Data	Not Gamm	na Distribut	ed at 5% Sig	gnificance Leve	əl
38		Data Not Gamm	a Distribute	d at 5% Signific	ance Leve	l			
39									
40			Gamma S	Statistics					
41		k hat (MLE)	1.985			k	star (bias co	rrected MLE)	1.829
42		Theta hat (MLE)	6.007			Theta	star (bias co	rrected MLE)	6.518
43		nu hat (MLE)	135				nu star (bia	as corrected)	124.4
44	M	LE Mean (bias corrected)	11.92				MLE Sd (bi	as corrected)	8.815
45		<u>' </u>			Α	pproximate	•	Value (0.05)	99.64
46	Adjus	sted Level of Significance	0.0422					Square Value	98.55
47	·	-							
		Ass	uming Gamr	ma Distribution					
48	95% Approximate Gamma		14.89			sted Gami	ma UCL (use	when n<50)	15.05
49		. ((33)	
50			Lognormal	GOF Test					
51	9	Shapiro Wilk Test Statistic	0.867		Shanir	o Wilk I on	normal GOF	Test	
52			0.007		Спарп	Log			

53	Α		В		<u>C</u>			D Wilk	Critica	E Il Value	: (F 0.933		G		H Data I	Not L	ogn	l ormal	at 5%	J % Sig	nifica		K Level		L	-
54							Lilli	iefors	Test S	Statistic	: (0.239					Lilli	efors	Logi	norma	al GO)F Tes	st				1
55						5%	6 Lilli	efors	Critica	l Value	. (0.15				Data I	Not L	ogn	ormal	at 5%	% Sig	nifica	nce	Level			1
56									Da	ta Not L	ogno	ormal at	t 5%	Signific	can	ce Lev	el										1
57																											
58											Lo	gnorma	al St	atistics													
59						N	/linim	um of	Logge	ed Data	1 (0.788									Mea	n of lo	ogge	ed Data	3	2.206	
60						M	axim	um of	Logge	ed Data	1 4	4.253									SI	D of lo	ogge	ed Data	3	0.692]
61																											
62													orma	al Distril	butio	on											
63										H-UCL		4.87									•	•		E) UCL		15.85	
64									-	E) UCL		7.85							97.5%	6 Che	ebysh	nev (N	1VUI	E) UCL	-	20.62	
65					9	99% C	Cheby	shev	(MVU	E) UCL	. 2	6.07															
66												S			<u> </u>	<u> </u>											
67										-				Free U													
68									uata (uo not f	Ollow	a Disc	erni	ble Dist	ribu	τιοn (0.	.05)										-
69										Non		Anic Pi	- باليية	wien F	'	101 -											-
70								0	E0/ O'	Nonpa T UCL			SUTIDU	ition Fre	e L	JCLS					OEO)/ les	lelen:	fo LIO		15 5	-
71						0E0/ C	Stone			ap UCL		5.4 5.41												fe UCL o-t UCL		15.5 19.82	1
72										ap UCL ap UCL		9.23							OE0					ap UCL		15.81	-
73										ap UCL		7.03							90 /	Pen	Centill	е Боо	JISII	ap oci	-		4
74					ana					d) UCL		8.26)5% (hahı	,chov	//Maa	n S	d) UCL	-	21.14	4
75								•		d) UCL		5.12										-		d) UCL		32.95	4
76					37.3	70 CITE	Dysi	ic v (ivid	cari, o	u) OCL		.5.12)	JIICD	yonev	(IVICa	11, 0	u) UCI	1_		-
77											Suc	aested	LUC	L to Use													4
78					95%	6 Che	bvsh	ev (Me	ean. S	d) UCL		1.14													T		-
79							-,	(-,																	-
80		Note	e: Sugg	gestic	ons re	egardii	ng th	e sele	ection o	of a 95%	% UC	L are p	orovi	ded to h	nelp	the us	er to	sele	ct the	mos	t app	ropria	ite 9	5% UC	CL.		-
81 82														ize, dat													1
83		The	ese red	comm	nenda	ations	are b	ased	upon	the resu	ults o	f the sir	mula	ation stu	ıdie	s sumn	nariz	ed ir	Sing	h, Ma	aichle	e, and	Lee	(2006	i).		1
84	ŀ	Howev	er, sin	nulati	ions r	esults	will ı	not co	ver all	Real V	Vorld	data se	ets; f	for addi	tion	al insig	ht th	e us	er ma	y wa	nt to d	consu	ılt a	statisti	cian		1
85																											-
86																											1
	Pb DTTP	Uppe	r Two l	Feet																							1
88																											1
89											G	eneral	Sta	tistics													
90					٦	Total N	Numb	er of	Obser	vations	2	2						ı	Numb	er of	Distir	nct Ob	oser	vations	3	22	1
91																		1	Numb	er of	Missi	ing Ob	oser	vations	3	0	
92									М	inimum		2.2												Mear	1	14.14	
93									Ма	aximum		0.3												Mediar		8.95	
94										SD		4.85									St	td. Err		of Mear		3.166	
95							Coe	efficier	nt of V	ariation		1.05											Ske	ewness	;	2.918	
96																											
97												lormal (GOF	F Test													
98							•			Statistic		0.619									OF T						
99					5	% Sh	•			l Value		0.911				Data	Not				•	ficano	ce Le	evel			1
100										Statistic		0.354									F Tes						
101						5%	6 Lilli	efors		l Value		0.184	F0	N: 10				Nor	mal a	t 5%	Signi	ficano	ce Le	evel			1
102									D	ata Not	t Nor	mal at 5	5% S	Significa	ince	Level											1
103														Diet:"	.4.1 -												1
104										As	sumi	ng Nori	mal	Distribu	itior	1											_

105	Α	В	C 95% No	D rmal UCL	E	F	G	95°	UCLs (A	\djusted	J for Skev	vness)	L
106				95% Stu	dent's-t UCL	19.58			95% Adj	usted-C	LT UCL	(Chen-1995)	21.45
107									95% Mc	odified-t	UCL (Jo	hnson-1978)	19.91
108													
109						Gamma (GOF Test						
110					Test Statistic	1.749			erson-Darl				
111				5% A-D C	Critical Value	0.758	D					nificance Lev	/el
112				K-S	Test Statistic	0.289			ogorov-Sm				
113					Critical Value	0.188				ributed a	at 5% Sig	nificance Lev	rel .
114				Da	ata Not Gamn	na Distribute	ed at 5% Sign	nificance Le	evel				
115													
116						Gamma	Statistics						
117					k hat (MLE)	1.695					,	rected MLE)	1.494
118				The	ta hat (MLE)	8.339			The		•	rected MLE)	9.46
119					nu hat (MLE)	74.59					•	as corrected)	65.75
120			ML	E Mean (bia	as corrected)	14.14					•	as corrected)	11.56
121									Approxin			Value (0.05)	48.09
122			Adjus	ted Level of	Significance	0.0386				Adjust	ted Chi S	quare Value	46.96
123													
124						suming Gam	ma Distribut						
125	Ç	95% Approxin	nate Gamma	UCL (use w	/hen n>=50))	19.33		95% <i>F</i>	Adjusted G	amma l	JCL (use	when n<50)	19.79
126													
127						Lognormal	GOF Test						
128			S	napiro Wilk	Test Statistic	0.884		Sha	apiro Wilk	Lognorn	nal GOF	Test	
129			5% SI	napiro Wilk C	Critical Value	0.911		Data No	t Lognorm	al at 5%	Signific	ance Level	
130				Lilliefors	Test Statistic	0.231		L	illiefors Lo	gnorma	I GOF T	est	
131			5'	% Lilliefors C	Critical Value	0.184		Data No	t Lognorm	al at 5%	Signific	ance Level	
132					Data Not L	ognormal at	5% Significa	ance Level					
133													
134						Lognorma	I Statistics						
135					Logged Data	0.788						logged Data	2.326
136			N	laximum of l	Logged Data	4.253					SD of	logged Data	0.776
137													
138					Assu	ıming Logno	rmal Distrib	ution					
139					95% H-UCL	20.38					•	MVUE) UCL	20.9
140				•	(MVUE) UCL	24.22			97.	5% Che	byshev (MVUE) UCL	28.81
141			99% (Chebyshev (MVUE) UCL	37.85							
142													
143		_			Nonparame								
144					Data do not fo	ollow a Disce	ernible Distri	bution (0.0	5)				
145													
146					-	ametric Dist	ribution Free	UCLs			_		
147					5% CLT UCL	19.34						ckknife UCL	19.58
148					ootstrap UCL	19.14						tstrap-t UCL	24.97
149					ootstrap UCL	39.43			95	5% Perc	entile Bo	ootstrap UCL	19.8
150					ootstrap UCL	22.02						_	
151				•	an, Sd) UCL	23.63				-	•	an, Sd) UCL	27.94
152			97.5% Ch	ebyshev(Me	an, Sd) UCL	33.91			99%	6 Cheby	shev(Me	an, Sd) UCL	45.64
153						_							
154						Suggested	UCL to Use				_		
155			95% Che	ebyshev (Me	an, Sd) UCL	27.94					_		
156													
													

	Α	B Note: Sugge	C estions re	garding	D the sele	E		F GUCL are n	G rovided to b	H eln the use	er to sele	l ect the	most au	J onropri:	K ate 95°		L
157		Tiolo: Gagge	0110110110					sed upon da		•				эргорги		70 OOL	·
158		These reco	mmenda					·						nle and	llee (2006)	
159	F	However, simu				•						_			•	,	ın
160		TOWEVER, SITTLE		Soutto Wi	11 1101 00	voi dii i v	oui VV	- Cria data se	no, for addi		11 110 00	oci illay	wante	0 001101	ant a 5th	atioticic	
161	Pb RB All	Denths															
162		Борино															
163								General	Statistics								
164			Т	otal Nur	nber of	Observa	tions	16				Numbe	er of Dis	stinct O	bserva	ations	15
165						er of De		15						per of N			1
166				Numb		stinct De		14				Numb	er of Di				1
167						nimum D		1.2						nimum			1
168						kimum D		33.1						ximum			1
169						ance De		80.79						rcent N			6.25%
170						Mean De		9.413							SD De		8.988
171						edian De		6.5							CV De		0.955
172						ness De		1.754							sis De		2.756
173				Mea		gged De		1.865					SD	of Log			0.908
174						33									,		
175							Norm	al GOF Tes	t on Detect	s Only							
176				Shap	iro Wilk	Test Sta		0.789			Sha	piro W	ilk GOF	Test			
177			5'			Critical \		0.881		Detected [•			ficance	e Level	
178						Test Sta		0.242					GOF T	•			
179						Critical \		0.22		Detected [ficance	e I evel	
180				0,02				Not Norma	l at 5% Sign				iai at o /	o Olgili		2010	
181																	
182			Kap	lan-Meie	er (KM) :	Statistics	s usine	g Normal Cr	itical Value	s and other	· Nonpai	rametri	c UCLs	}			
183					()		Mean	8.888					M Stan		ror of I	Mean	2.239
184							M SD	8.651					95	5% KM	(BCA)	UCL	13
185 186					959	% KM (t)	UCL	12.81			95%	% KM (F	Percent		, ,		12.76
187						6 KM (z)		12.57				•	95% K	M Boo	strap t	UCL	15.53
188				90%		ebyshev		15.6					95% KI				18.65
189				97.5%	KM Che	ebyshev	UCL	22.87					99% KI				31.16
190																	
191					(Gamma	GOF	Tests on De	tected Obs	ervations O	Only						
192					A-D	Test Sta	tistic	0.39			Anders	son-Da	rling G	OF Tes	t		
193				5	5% A-D	Critical \	/alue	0.754	Detect	ed data app	pear Ga	mma D	istribut	ed at 5	% Sigr	nificano	e Level
194					K-S	Test Sta	tistic	0.149			Kolmo	ogorov-	-Smirno	v GOF			
195				5	5% K-S	Critical \	/alue	0.226	Detect	ed data app	pear Ga	mma D	Distribut	ed at 5	% Sigr	nificano	e Level
196					Detected	d data ap	opear	Gamma Dis	tributed at	5% Signific	ance Le	evel					
197																	
198						Ga	mma	Statistics or	Detected I	Data Only							
199						k hat (I	MLE)	1.471				k	star (bi	as corr	ected	MLE)	1.221
200					The	eta hat (I	-	6.398				Theta	star (bi	as corr	ected	MLE)	7.707
200						nu hat (I		44.14					nu st	ar (bia:	s corre	ected)	36.64
201						ean (det		9.413									
202							•		1								
203					-	Gamma	ROS	Statistics us	sing Impute	d Non-Dete	ects						
205			GROS	may not	be used	d when d	data s	et has > 50°	6 NDs with	many tied o	observa	tions a	t multip	le DLs			
205		GROS may						small such a							.g., <1	5-20)	
207								method may	-	=		-		-		-	
207								ally true whe									
۷0																	

	A B C D E For gamma distributed detected data, BTVs a	F nd LICLs ma	G H I J K by be computed using gamma distribution on KM estimates	L
209	Minimum	0.01	Mean	8.826
210	Maximum	33.1	Median	6.2
211	SD	8.996	CV	1.019
212	k hat (MLE)	0.825	k star (bias corrected MLE)	0.712
213	Theta hat (MLE)	10.7	Theta star (bias corrected MLE)	12.4
214	nu hat (MLE)	26.39	nu star (bias corrected)	22.78
215	Adjusted Level of Significance (β)	0.0335	nu star (bias corrected)	22.70
216	Adjusted Level of Significance (p) Approximate Chi Square Value (22.78, α)	12.92	Adjusted Chi Square Value (22.78, β)	12.08
217	95% Gamma Approximate UCL (use when n>=50)	15.56	95% Gamma Adjusted UCL (use when n<50)	16.64
218	95% Gamma Approximate OCL (use when n>-50)	15.56	95% Gamma Adjusted OCL (use when his 50)	10.04
219	Estimates of Go	mma Daran	neters using KM Estimates	
220	Mean (KM)	8.888	SD (KM)	8.651
221	Variance (KM)	74.84	SE of Mean (KM)	2.239
222	k hat (KM)	1.055	k star (KM)	0.899
223	nu hat (KM)	33.77	nu star (KM)	28.78
224				
225	theta hat (KM) 80% gamma percentile (KM)	8.421 14.42	theta star (KM) 90% gamma percentile (KM)	9.883
226	95% gamma percentile (KM)	27.65	90% gamma percentile (KM)	43.2
227	95% gamma percentile (KM)	27.00	99% gamma percentile (Kivi)	43.2
228	Comm	a Manlan Ma	eier (KM) Statistics	
229	Approximate Chi Square Value (28.78, α)	17.53	Adjusted Chi Square Value (28.78, β)	16.54
230	95% Gamma Approximate KM-UCL (use when n>=50)	14.59	95% Gamma Adjusted KM-UCL (use when n<50)	15.46
231	95% Gamma Approximate KW-OCL (use when 112–50)	14.59	95% Gamma Adjusted KWI-OCL (use when his 50)	15.46
232	Lognormal COI	E Toot on De	etected Observations Only	
233	Shapiro Wilk Test Statistic	0.972	Shapiro Wilk GOF Test	
234	5% Shapiro Wilk Critical Value	0.972	Detected Data appear Lognormal at 5% Significance Le	vol
235	5% Shapiro Wilk Chical Value Lilliefors Test Statistic	0.001	Lilliefors GOF Test	vei
236	5% Lilliefors Critical Value	0.144	Detected Data appear Lognormal at 5% Significance Le	vol
237			mal at 5% Significance Level	vei
238	Detected Data ap	pear Logilor	mai at 5% Oignineance Level	
239	Lognormal ROS	Statistics L	Ising Imputed Non-Detects	
240	Mean in Original Scale	8.868	Mean in Log Scale	1.726
241	SD in Original Scale	8.953	SD in Log Scale	1.04
242	95% t UCL (assumes normality of ROS data)	12.79	95% Percentile Bootstrap UCL	12.73
243	95% BCA Bootstrap UCL	13.13	95% Bootstrap t UCL	16.52
244	95% H-UCL (Log ROS)	20.26	25.5 2556.04 1 555	
245246				
	Statistics using KM estimates o	n Logged D	ata and Assuming Lognormal Distribution	
247	KM Mean (logged)	1.749	KM Geo Mean	5.747
248	KM SD (logged)	0.962	95% Critical H Value (KM-Log)	2.646
249	KM Standard Error of Mean (logged)	0.249	95% H-UCL (KM -Log)	17.62
250	KM SD (logged)	0.962	95% Critical H Value (KM-Log)	2.646
251	KM Standard Error of Mean (logged)	0.249		
252253	· 55 /			
254		DL/2 St	atistics	
255	DL/2 Normal		DL/2 Log-Transformed	
	Mean in Original Scale	8.856	Mean in Log Scale	1.705
256	SD in Original Scale	8.965	SD in Log Scale	1.086
257258	95% t UCL (Assumes normality)	12.79	95% H-Stat UCL	21.99
259	,		ed for comparisons and historical reasons	
260		-		
Z0U				

0.1	Α	В	С	D	E Nonparame	F tric Distribut	G Ion Free UCL Stati	H I	J K	L
261				Detected	•		tributed at 5% Sig			
262					. Data appoar					
263						Suggested	UCL to Use			
264			95% K	(M Adiusted (Gamma UCL	15.46		95% G	ROS Adjusted Gamma UCL	16.64
265 266										
267		Note: Sugge	estions regard	ding the selec	ction of a 95%	UCL are pr	ovided to help the	user to select th	e most appropriate 95% UCL	
268			Г	Recommenda	ations are bas	sed upon dat	a size, data distrib	oution, and skew	ness.	
269		These reco	mmendation	s are based i	upon the resu	Its of the sin	nulation studies su	mmarized in Sin	gh, Maichle, and Lee (2006).	
270	Н	owever, simi	ulations resul	ts will not cov	ver all Real W	orld data se	ts; for additional in	sight the user m	ay want to consult a statisticia	an.
271										
272	Pb RB Upp	oer Two Feet	i							
273										
274						General	Statistics			
275			Tota	l Number of 0	Observations	11		Num	ber of Distinct Observations	10
276				Numb	er of Detects	10			Number of Non-Detects	1
277			N	lumber of Dis	tinct Detects	9		Nun	nber of Distinct Non-Detects	1
278				Min	imum Detect	1.2			Minimum Non-Detect	1
279					imum Detect	33.1			Maximum Non-Detect	1
280				Varia	ance Detects	91.44			Percent Non-Detects	9.091%
281				N	lean Detects	9.17			SD Detects	9.562
282					dian Detects	6.65			CV Detects	1.043
283					ness Detects	2.006			Kurtosis Detects	4.495
284				Mean of Log	gged Detects	1.785			SD of Logged Detects	0.99
285										
286							t on Detects Only			
287					Test Statistic	0.772	_	•	Wilk GOF Test	
288			5% S		Critical Value	0.842	Detect		rmal at 5% Significance Level	
289					Test Statistic	0.261			ors GOF Test	
290				5% Lilliefors (0.262			Iormal at 5% Significance Lev	el
291				Detected	Data appear	Approximate	Normal at 5% Sig	Initicance Level		
292			Vanlan	Major (KM) 9	Statiatica wain	a Normal Cr	itical Values and o	thar Nannarams	stria LICI a	
293			Napiaii-	-ivielei (Kivi) s	KM Mean	8.427	lucai values and o		KM Standard Error of Mean	2.848
294					KM SD	8.963			95% KM (BCA) UCL	12.97
295				05%	6 KM (t) UCL	13.59		05% KN	1 (Percentile Bootstrap) UCL	13.4
296					KM (z) UCL	13.11		33 /0 INIV	95% KM Bootstrap t UCL	18.57
297					ebyshev UCL	16.97			95% KM Chebyshev UCL	20.84
298				7.5% KM Che	•	26.22			99% KM Chebyshev UCL	36.77
299					,	-			22,3	
300				G	Gamma GOF	Tests on De	tected Observation	ns Only		
301					Test Statistic	0.307		•	Darling GOF Test	
302 303				5% A-D (Critical Value	0.743	Detected data		a Distributed at 5% Significand	ce Level
303				K-S	Test Statistic	0.185		• •	ov-Smirnov GOF	
305				5% K-S (Critical Value	0.272	Detected data		a Distributed at 5% Significand	e Level
306				Detected	l data appear	Gamma Dis	tributed at 5% Sigi	nificance Level		
307										
308					Gamma	Statistics on	Detected Data On	ıly		
309					k hat (MLE)	1.303			k star (bias corrected MLE)	0.979
310				The	eta hat (MLE)	7.039		The	ta star (bias corrected MLE)	9.371
311				1	nu hat (MLE)	26.05			nu star (bias corrected)	19.57
312				Me	ean (detects)	9.17				
							<u>I</u>		L.	

	Α	В	(С	D)		E		F	G		Н		ı		J		K		L	T
313							Samm	a ROS	Statis	tics us	sing Imp	uted N	on-Dete	ects								
314			GRO	S mav	not be						% NDs v				ations	at mul	tiple DL	_S				-
315		GROS ma											•				•		<15-20))		4
316											yield in											-
317 318										-	en the sa											-
319		For ga	amma d	istribute	ed dete			-	-		ay be co	-			a distri	ibution	on KM	estin	nates			-
320								nimum											Mea	n	8.337	-
321							Ма	ximum	33	.1									Media	n	5.8	1
322								SD	9.	483									C/	/	1.137	-
323							k hat	(MLE)	0.	664						k star	(bias co	orrect	ed MLE	.)	0.544	1
324						The	ta hat	(MLE)	12	.55					Thet	a star	(bias co	orrect	ed MLE)	15.33	
325						r	nu hat	(MLE)	14	.62						nu	ı star (b	ias co	rrected)	11.96	1
326			Ad	djusted	Level	of Sig	nifica	nce (β)	0.0)278										-		
327		Ap	proxima	ate Chi	Squar	e Val	ue (11	Ι.96, α	5.	203				Adjı	usted C	Chi Sq	uare Va	alue (11.96, β	3)	4.498	
328		95% Gamm	na Appro	oximate	e UCL ((use v	when	n>=50)) 19	.17			95%	Gamm	na Adju	usted (JCL (us	e whe	en n<50))	22.18	
329									1		1											1
330						Es	stimate	es of G	amma	Para	meters u	sing K	M Estin	nates								1
331							Mea	n (KM)	8.	427								(SD (KM)	8.963	1
332						Va	arianc	e (KM)	80	.33							SE	of Me	an (KM)	2.848	
333							k ha	at (KM)	0.	884								k s	tar (KM)	0.704	
334							nu ha	at (KM)	19	.45								nu s	tar (KM)	15.48	
335								at (KM)		532							th	neta s	tar (KM)	11.98	
336				80%	gamm	na pe	rcentil	e (KM)	13	.85					90	0% ga	ımma pe	ercen	tile (KM	1)	21.13	
337				95%	gamm	na pe	rcentil	e (KM)	28	.63					99	9% ga	ımma pe	ercen	tile (KM	1)	46.53	
338																						
339											eier (KM	l) Statis	stics									
340			proxima				-	-		596				_			uare Va		-	1	6.715	
341	95	% Gamma Ap	pproxim	ate KM	1-UCL ((use \	when	n>=50)) 17	.17		9	5% Gar	nma A	djusted	d KM-U	JCL (us	e whe	en n<50	1)	19.43	
342																						
343											etected	Obser	vations									
344					hapiro \					975					•		OF Tes					
345				5% Sh	napiro \					842		Detec	ted Dat				al at 5%	Signi	ticance	Leve	el	
346								tatistic		167		Б.			Lilliefor			0	r.			
347				5%	% Lillie					262				• • •	·	norma	al at 5%	Signi	ficance	Leve	el	
348						Dete	ectea i	Jata ap	opear L	_ognoi	rmal at 5	% Sigi	nıncanc	e Leve	l							
349						1		! 00	C C+-+:	-4 1	laina lu		Non De	44-								4
350					Maan		_	l Scale		384	Jsing Im	putea	Non-De	tects			Maar	n in L	a Cool		1.564	4
351								l Scale		439									og Scal		1.193	
352		Q5% +	UCL (a	eeumo			•			.54					050	% Porc	entile E		•		13.31	-
353		90 /o l	JOL (d		95% BC					.24					907		95% Bc		•		18.18	4
354								ROS)		.81							JJ /0 DC	Ololi	ap i UC	+	10.10	-
355					JJ /0 I		- (-06	,)	, 54	.01												-
356				Statist	tics usi	na Ki	M esti	mates	on Loa	iged D	ata and	Assun	nina I or	norma	ıl Distri	ibution	1					-
357				Juliot				ogged)		623	and dild	uii	g0(,	51341			(M G	eo Meai	n	5.069	-
358								ogged)		032					95%	% Critic	cal H Va				3.059	-
359			KM S	Standar	d Error		•	,		328							5% H-U	•	_	"	23.42	-
360			0				-	ogged)		032					95%		cal H Va	•		<u> </u>	3.059	-
361			KM S	Standar	d Error		-			328								(1	9	+		1
362							(1	JJ 24,	,	-												-
363										DL/2 S	tatistics											1
364																						

365	Α	В	C DL/2	D Normal	E	F	G	Н	DL/2 Log-	J Fransformed	K	L
366				Mean in C	Original Scale	8.382				Mean	in Log Scale	1.56
367				SD in C	Original Scale	9.441				SD	in Log Scale	1.2
368			95% t	UCL (Assum	es normality)	13.54				95%	6 H-Stat UCL	35.46
369			DL/2	is not a reco	mmended me	ethod, provid	ed for compar	risons and l	historical rea	sons	ļ	
370												
371					Nonparame	etric Distribut	ion Free UCL	Statistics				
372			De	etected Data	appear Appro	ximate Norn	nal Distributed	d at 5% Sig	nificance Le	vel		
373												
374						Suggested	UCL to Use					
375				95%	6 KM (t) UCL	13.59						
376												
377						, •	normal) distrit	•	•			
378		When app	olicable, it is	suggested to	use a UCL b	ased upon a	distribution (e	e.g., gamm	a) passing b	oth GOF test	ts in ProUCL	
379												
380		Note: Sugge				·					riate 95% UCL	
381						·	ta size, data d				(2222)	
382					<u> </u>						nd Lee (2006).	
383	Ho	owever, simu	ilations resu	ilts will not co	ver all Real V	Vorld data se	ts; for addition	nal insight t	he user may	want to con	sult a statistici	an.
384	Ue DTTD A	II Dontho										
303	Hg DTTP A	iii Deptris										
386						General	Statistics					
387			Tota	al Number of 0	Ohearvations		Statistics		Numbe	r of Distinct	Observations	22
388			1012		er of Detects				Numbe		Non-Detects	18
389			N	Number of Dis		15			Numb		Non-Detects	8
390			<u>'</u>		imum Detect				- Trumb		n Non-Detect	0.06
391					imum Detect						n Non-Detect	0.16
392					ance Detects						Non-Detects	52.94%
393				N	lean Detects	0.938					SD Detects	2.042
394					dian Detects						CV Detects	2.178
395 396				Skewi	ness Detects	3.137				Kur	tosis Detects	10.63
397				Mean of Log	gged Detects	-1.637				SD of Lo	gged Detects	1.668
398												
399					Norm	nal GOF Test	t on Detects C	Only				
400			;	Shapiro Wilk	Test Statistic	0.505			Shapiro W	ilk GOF Test		
401			5% 5	Shapiro Wilk (Critical Value	0.887	D	etected Da	ta Not Norm	al at 5% Sigr	nificance Leve	,[
402				Lilliefors	Test Statistic	0.397			Lilliefors	GOF Test		
403				5% Lilliefors (Critical Value	0.213	D	etected Da	ta Not Norm	al at 5% Sigr	nificance Leve	Į.
404				[Detected Data	Not Norma	at 5% Signifi	cance Leve	el			
405												
406			Kaplan	-Meier (KM) S	Statistics usin	g Normal Cr	itical Values a	nd other N	onparametri	c UCLs		
407					KM Mean				K	M Standard E	Error of Mean	0.252
408					KM SD	1.425					M (BCA) UCL	0.983
409					6 KM (t) UCL				95% KM (F		otstrap) UCL	0.943
410					KM (z) UCL	0.889					otstrap t UCL	1.829
411				90% KM Che		1.231					ebyshev UCL	1.574
412			9	7.5% KM Che	ebyshev UCL	2.05				99% KM Che	ebyshev UCL	2.986
413						<u></u>						
414							tected Observ		·			
415					Test Statistic		_			rling GOF Te		
416				5% A-D (Critical Value	0.814	Detecte	d Data Not	Gamma Dis	stributed at 5	% Significance	e Level

417	A		В		(С		D K-	-S Te	E est Sta			F .373		G			Н	ŀ	Soln	l nogo	rov-	-Smi	J irnov	GOI	F	K	工	L	
418							5	% K-	S Cr	itical \	/alue	0	.23		D	etecte	ed D	ata N	Not	Gai	mma	Dis	stribu	uted	at 5%	% Si	gnifica	ince	Level	
419								Dete	ected	l Data	Not 0	Gamn	a Dist	tribu	uted a	at 5%	Sig	nifica	ance	e Le	vel									
420																														
421							-			Gai	mma	Statis	tics o	n D	etect	ed Da	ta C	Only												
422							-		ŀ	k hat (I	MLE)	0	.416									k	star	(bia	s cor	rect	ed ML	E)	0.37	79
423								Т	Theta	a hat (l	MLE)	2	.255								Th	eta	star	r (bia	s cor	rect	ed ML	E)	2.47	⁷ 1
424									nι	ı hat (l	MLE)	1:	3.3										nı	u sta	ır (bia	as co	rrecte	ed)	12.1	4
425							-		Mea	an (det	ects)	0	.938																	
426																														
427										amma					•										-					
428							-			when c							-							•						
429		G	ROS m	nay n	ot be																				nall (e	e.g.,	<15-2	20)		
430						Fo	or suc	ch situ		ns, Gl											_s an	id B	TVs	3						
431										nis is e	•	•													148.4					
432			For g	jamn	na di	istribu	ıted d	letect	ted d	lata, B				nay	be co	mput	ed ι	using	ga	mm	a dis	tribu	utior	n on	KM e	estim				
433											mum		01														Me		0.45	
434										Maxi		8															Medi		0.04	
435											SD		.452															CV	3.18	
436								_		k hat (I			.305											•			ed ML	1	0.29	
437								ı		a hat (I			.497								۱h	eta					ed ML		1.53	
438										ı hat (I	,).71										nı	u sta	ır (bia	as co	rrecte	;d)	20.2	2
439										ificand	,		0422																	
440										e (20.2			.01							-				•		•	20.22,		10.6	
441		959	% Gamı	ma A	Appro	oxima	te UC	CL (us	se w	hen n>	-=50)	0	.837					95%	Ga	amn	na Ac	djus	ted	UCL	(use	whe	en n<5	50)	0.86	5 4
442									F-4	· •	-40		. D				1/1.4													
443										imates				ame	eters (ising i	KW	Esun	nate	es							2D (K)	N 4 \	1 40) F
444										Mean iance			.474												CE a		SD (KI		0.25	
445									var		. ,														SE 0		an (K	-		
446										k hat nu hat			.11 .512														tar (Kl tar (Kl		0.12 8.18	
447										ta hat			.288														tar (K	•	3.93	
448						800	% σοι	mma		entile	` '		.200									ang	0/- ar	omm			tile (K		1.34	
449									-	entile			.702										-				tile (K	1	6.84	
450						JJ .	, yaı	шиа	heic	, in the	(17171)		. 1 02									J 9 1	,₀ yo	amill	ia pei	CCII	me (IV	· v i /	0.04	
451											amm	a Ka	olan-M	منمار	ar (KA	() Stat	tieti.	re												_
452				Annr	rovin	nate C	ìhi Sr	lliare	اد/\ ا	ue (8.1			.841	·icie	>1 (1XIV	ı, J.al	นอนใ			Δο	lineta	24 C	`hi S	Same	re \/a	alue	(8.18,	R)	2.68	37
453	(95% C	amma <i>A</i>					•		•			.364				95%	6 Gar	mm		-						(o. 16, en n<5		1.44	
454		,	annia F	,ppi	OAIIII	iaio IN	00	- (us	JC W		50)	'	.557			,	JJ /	J Gai	11	.u /\	ajust	Ju I	XIVI-	JUL	(436		JII 1170	,	1.74	_
455									Loc	norma	1 GO	F To	t on F)ete	acted	Ohee	n/et	ione	Onl	lv										
456						Ç	Shani	ro Wi		est Sta			.813		Joiou	- 550	. rat		J111		apiro) Wi	ilk G	OF :	Test					
457										itical V			.887			De	tect	ed D)ata							nifir	cance	l ev	el	
458						J /0 J				est Sta			.282					D	uid		Lillief					9.1111	Jan 100			
459						F				itical V			.213			De	tect	ted D)ata							gnific	cance	Lev	el	_
460										ected [mal	at 59						- - y			J. 0	. J OIG	٠١			<u></u>	_
461										u L		.J. L	I		4.07	Jugii				. ••										\dashv
462									Lon	norma	I ROS	S Stat	istics	Usi	ina Im	puted	l No	n-De	etec	ts										\dashv
463							M			ginal S			.48	751	ا" و	.,		50						I./	1ean	in I d	og Sca	ale	-2.27	3
464										ginal S			.445														ng Sca		1.37	
465			95%	t UC	L (a	SSUM				ROS			.899								9!	5%	Per	centi			rap U		0.91	
466			2070		_ ,u,					otstrap			.195														ap t U		1.73	
467										(Log F			.534											2370			_	_	,	_
468								C	, JL	(=5g i	.55)																	\perp		

469 Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution 471 KM Mean (logged) -2.274 KM Geo 472 KM SD (logged) 1.279 95% Critical H Value (KM 473 KM Standard Error of Mean (logged) 0.234 95% H-UCL (KM 474 KM SD (logged) 1.279 95% Critical H Value (KM 475 KM Standard Error of Mean (logged) 0.234	
470 KM Mean (logged) -2.274 KM Geo 471 KM SD (logged) 1.279 95% Critical H Value (KM 472 KM Standard Error of Mean (logged) 0.234 95% H-UCL (KM 473 KM SD (logged) 1.279 95% Critical H Value (KM 474 KM Standard Error of Mean (logged) 0.234	
471 KM SD (logged) 1.279 95% Critical H Value (KM 472 KM Standard Error of Mean (logged) 0.234 95% H-UCL (KM 473 KM SD (logged) 1.279 95% Critical H Value (KM 474 KM Standard Error of Mean (logged) 0.234 95% Critical H Value (KM	Mean 0.103
KM Standard Error of Mean (logged) 0.234 95% H-UCL (KM KM SD (logged) 1.279 95% Critical H Value (KM KM Standard Error of Mean (logged) 0.234	
KM SD (logged) 1.279 95% Critical H Value (KM	0,
VM Standard Error of Magn (Jaggad) 0 224	0,
475 CAN Standard Error or Mean (logged) 0.234	1-L0g) 2.809
476 DL/2 Statistics	
DI (O Normal	
Magn in Original Scale 0.475 Magn in Log	Scale -2.242
SD in Original Cools 1 AAS	
40U 050(A LOL (A aguirraga in arraghlia) 0 005	
DI/O is not a recommended method, provided for comparisons and historical recomm	
402	
483 Nonparametric Distribution Free UCL Statistics	
Data do not follow a Discernible Distribution at 5% Significance Level	
486	
487 Suggested UCL to Use	
95% KM (Chebyshev) UCL 1.574	
489	
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95	% UCL.
Recommendations are based upon data size, data distribution, and skewness.	
These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee ((2006).
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a st	atistician.
494	
Hg DTTP Upper Two Feet	
496	
497 General Statistics	
498 Total Number of Observations 22 Number of Distinct Observa	ations 17
Number of Detects 12	
Number of Distinct Detects 12 Number of Distinct Non-Detects 12	etects 5
500 Number of Distinct Detects 12 Number of Distinct Non-Detects 501 Minimum Detect 0.04 Minimum Non-Detect 501	etects 5 Detect 0.06
Number of Distinct Detects 12 Number of Distinct Non-Detect 501 Minimum Detect 0.04 Minimum Non-Detect 502 Maximum Detect 8 Maximum Non-Detect 700 Maximum Non-Detect 8	etects 5 Detect 0.06 Detect 0.15
499Number of Distinct Detects12Number of Distinct Non-Detects500Minimum Detect0.04Minimum Non-Detects502Maximum Detect8Maximum Non-Detects503Variance Detects5.456Percent Non-Detects	Detect
500 Number of Distinct Detects 12 Number of Distinct Non-Detect Non-Detect 501 Minimum Detect 0.04 Minimum Non-Detect 502 Maximum Detect 8 Maximum Non-Detect 503 Variance Detects 5.456 Percent Non-Detect 504 Mean Detects 1.122 SD Detects	Detect
499 Number of Distinct Detects 12 Number of Distinct Non-Detects 501 Minimum Detect 0.04 Minimum Non-Detects 502 Maximum Detect 8 Maximum Non-Detects 503 Variance Detects 5.456 Percent Non-Detects 504 Mean Detects 1.122 SD Detects 505 Median Detects 0.086 CV Detects	Detect
500 Number of Distinct Detects 12 Number of Distinct Non-Detect Non-D	Detects 5 Detect 0.06 Detect 0.15 Detects 45.45% Detects 2.336 Detects 2.081 Detects 7.89
499 Number of Distinct Detects 12 Number of Distinct Non-Detect Non-D	Detects 5 Detect 0.06 Detect 0.15 Detects 45.45% Detects 2.336 Detects 2.081 Detects 7.89
500 Number of Distinct Detects 12 Number of Distinct Non-Detect Non-Detects 501 Minimum Detect 0.04 Minimum Non-Detects 502 Maximum Detect 8 Maximum Non-Detects 503 Variance Detects 5.456 Percent Non-Detects 504 Mean Detects 1.122 SD Detects 505 Median Detects 0.086 CV Detects 506 Skewness Detects 2.73 Kurtosis Detects 507 Mean of Logged Detects -1.624 SD of Logged Detects	Detects 5 Detect 0.06 Detect 0.15 Detects 45.45% Detects 2.336 Detects 2.081 Detects 7.89
499 Number of Distinct Detects 12 Number of Distinct Non-Detect Non-Detects 501 Minimum Detect 0.04 Minimum Non-Detects 502 Maximum Detect 8 Maximum Non-Detects 503 Variance Detects 5.456 Percent Non-Detects 504 Mean Detects 1.122 SD Detects 505 Median Detects 0.086 CV Detects 506 Skewness Detects 2.73 Kurtosis Detects 507 Mean of Logged Detects -1.624 SD of Logged Detects 508 Normal GOF Test on Detects Only	Detects 5 Detect 0.06 Detect 0.15 Detects 45.45% Detects 2.336 Detects 2.081 Detects 7.89
499 Number of Distinct Detects 12 Number of Distinct Non-Detect Non-D	etects 5 Detect 0.06 Detect 0.15 etects 45.45% etects 2.336 etects 2.081 etects 7.89 etects 1.821
Number of Distinct Detects 12	etects 5 Detect 0.06 Detect 0.15 etects 45.45% etects 2.336 etects 2.081 etects 7.89 etects 1.821
Number of Distinct Detects 12 Number of Distinct Non-Detects 0.04 Minimum Non-Detect 0.04 Minimum Non-Detect 0.04 Maximum Non-Detect 0.004 Maximum Non	etects 5 Detect 0.06 Detect 0.15 etects 45.45% etects 2.336 etects 2.081 etects 7.89 etects 1.821
Number of Distinct Detects 12 Number of Distinct Non-Detect 0.04 Minimum Non-Detect 0.04 Minimum Non-Detect 0.04 Minimum Non-Detect 0.04 Maximum Non-Detect 0.03 Variance Detects 0.456 Percent Non-Detect 0.04 Mean Detects 1.122 SD Detect 0.086 CV Detect 0.086 Skewness Detects 0.086 CV Detect 0.086 Skewness Detect 0.086 Skewness Detect 0.086 Shapiro Wilk Test Statistic 0.054 Shapiro Wilk GOF Test 0.051 Shapiro Wilk Critical Value 0.059 Detected Data Not Normal at 5% Significance 0.051 Shapiro Critical Value 0.055 Detected Data Not Normal at 5% Significance 0.051 Shapiro Critical Value 0.055 Detected Data Not Normal at 5% Significance 0.051 Shapiro Critical Value 0.055 Detected Data Not Normal at 5% Significance 0.051 Shapiro Critical Value 0.055 Detected Data Not Normal at 5% Significance 0.051 Shapiro Critical Value 0.055 Detected Data Not Normal at 5% Significance 0.051 Shapiro Critical Value 0.055 Detected Data Not Normal at 5% Significance 0.051 Shapiro Critical Value 0.055 Detected Data Not Normal at 5% Significance 0.051 Shapiro Critical Value 0.051 Shapiro	etects 5 Detect 0.06 Detect 0.15 etects 45.45% etects 2.336 etects 2.081 etects 7.89 etects 1.821
Number of Distinct Detects 12 Number of Distinct Non-Detects 5.00 Number of Distinct Non-Detects 0.04 Minimum Non-Detect 0.04 Minimum Non-Detect 0.04 Maximum Non-Detect 0.04 Maximum Non-Detect 0.04 Maximum Non-Detect 0.05 Maximum Non-Detect 0.05 Maximum Non-Detect 0.05 Mean Detects 0.05 Median Detects 0.05 Median Detect 0.086 CV Detect 0.086 CV Detect 0.086 Mean of Logged Detect 0.086 Skewness Detect 0.086 Mean of Logged Detect 0.086 Shapiro Wilk Test Statistic 0.05 Mean of Logged Detect 0.05 Mean Of L	etects 5 Detect 0.06 Detect 0.15 etects 45.45% etects 2.336 etects 2.081 etects 7.89 etects 1.821
Number of Distinct Detects Number of Distinct Detects 12 Number of Distinct Non-Detects 13 Number of Distinct Non-Detects 14 Number of Distinct Non-Detects 15 Number of Detected Number Detects 15 Number of Distinct Non-Detects 15 Number of Detected Number Detects 15 Number Detected Number Detects 15 Number of Detected Number Detects 15 Num	etects 5 Detect 0.06 Detect 0.15 etects 45.45% etects 2.336 etects 2.081 etects 7.89 etects 1.821
Number of Distinct Detects Number of Distinct Non-Detect	etects 5 Detect 0.06 Detect 0.15 Detects 45.45% Detects 2.336 Detects 2.081 Detects 1.821 Detects 2.081
Number of Distinct Detects Number of Distinct Detects Number of Distinct Non-Detects Non-Detects Non-Detects Non-Detects Non-Detects Number of Distinct Non-Detects Non-Detects Non-Detects Number of Distinct Non-Detects Non-Detects Number of Distinct Non-Detects Non-Detected Data Not Normal at 5% Significance Level Number of Distinct Non-Detects Non-Detects Non-Detect Non-Detected Data Not Normal at 5% Significance Level Number of Distinct Non-Detects Non-Detects Non-Detects Non-Detects Non-Detected Data Not Normal at 5% Significance Level Number of Distinct Non-Detects Non-Detected Data Not Normal at 5% Significance Level Number of Distinct Non-Detected Data Not Normal at 5% Significance Level Number of Distinct Non-Detects Non-Detected Data Not Normal at 5% Significance Level Number of Distinct Non-Detects Non-Detected Data Not Normal at 5% Significance Level Number of Distinct Non-Detected Data Not Normal at 5% Significance Level Number of Distinct Non-Detected Data Not Normal at 5% Significance Level Number of Distinct Non-Detected Data Not Normal at 5% Significance Level	Detect 0.06 Detect 0.15 Detect 0.15 Detect 45.45% Detect 2.336 Detect 2.081 Detect 2.81 Detect 2.336 Detect 2.336
Number of Distinct Detects 12	Detects 5
Number of Distinct Detects 12 Number of Distinct Non-Detects 5.00 Number of Distinct Non-Detects 0.04 Minimum Non-Educt 0.04 Minimum Non-Educt 0.04 Minimum Non-Educt 0.04 Minimum Non-Educt 0.03 Maximum Detect 0.04 Maximum Non-Educt 0.03 Maximum Non-Educt 0.03 Maximum Non-Educt 0.03 Mean Detects 0.04 Mean Detects 0.086 Median Detect 0.086 Median	Detects 5

		Α	В		С	000/	D	E	ICI	F 1.798	C	ì	Н			I	OE 0	J	2001	K	CI	L 2.323
Camma GOF Tests on Delacted Observations Only	521							•														
Comman CoFT tests on Detected Disservations City	522					97.5%	KIVI CII	ebysnev t	JCL	3.051							99%	o KIVI CI	iebys	snev U	CL	4.482
A. D. Test Statistic 1.655	523							Camma (Tooto on Do		Ohaar		0=6								
Second	524										etected	Obser	vauons				\!!	- 00F T	F4			
Second Common C	525											>	- I D - I -							· : c: -		
Second Color Seco	526										L	Jetecte	ed Data							ignifica	ance i	Levei
Detected Data Not Gamma Distributed at 5% Significance Level	527											>	I D - 1 -							· : c : -		
Second	528																DISTRID	uted at :	5% S	ignitica	ance i	Levei
Same Substitice on Detected Data Only	529						Detect	ted Data N	NOT G	amma Dist	ributea	at 5%	Signific	ance	e Lev	eı						
San	530							Co		Ctatiatian ar	. Data a	ad Da	to Only									
Theta hat (MLE) 2.944 Theta star (bios corrected MLE) 3.287	531										Detec	ieu Da	ta Only	<i>"</i>			lı otor	· /bioo o		tod MI		0.241
Name	532						Th											•				
	533							•								me		•			´	
Sas Gamma ROS Statistics using Imputed Non-Detects	534																- 11	u Stai (L	nas c	OHECK	J u)	0.195
Gamma ROS Statistics using imputed Non-Detects	535						IV	iean (dete	cis)	1.122												
GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs	536							Commo	200	Statistics	oina Imu	outod l	Non De	tooto								
GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)	537				DOS 22	2011 201										tions	ot mi	ultinla DI				
For such situations, GROS method may yield incorrect values of UCLs and BTVs			CBOS m																		20)	
This is especially true when the sample size is small.	539		GRUSIII	ay nc															(e.g.	., < 13-2		
For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates						- OI SU										s ariu	DIVS	•				
Minimum 0.01 Mean 0.627			For a	amm	a distri	hutod (-		-				dictr	ihutio	n on KN	1 octiv	matas		
Section Se			roi y	allilli	a uisiiii	Duteu (uetectet				ay be c	omput	eu usiii	y ya	IIIIIIa	uisii	ibulioi	I OII KIV	ı esiii		non l	0.627
SS SS SS SS SS SS SS S	543																					
Section Sec	544							IVIAXIII														
Theta hat (MLE) 2.145 Theta star (bias corrected MLE) 2.217	545							k bot (M									lı otor	· /bioo o				
12.44 12.45 12.86	546						Th											`				
Adjusted Level of Significance (β) 0.0386	547															me		•				
Approximate Chi Square Value (12.44, α) 5.518	548				Adiuct	tod Lov		-									- 11	u Stai (L	ла з С	OHECK	-u)	12.44
95% Gamma Approximate UCL (use when n>=50) 1.413 95% Gamma Adjusted UCL (use when n<50) 1.506			Δι	nnrov					,						Δdin	ctad (≏hi S≀	ruare V	ا میاد	(12 //	B)	5 176
S552 Start								•					959		-			-		-		
September Sep							OL (450	WIICHTIP	00)	1.410				70 GC	21111110	<i>a 7</i> (a)(10100	00L (ut	,		30)	1.000
Mean (KM) 0.639 SD (KM) 1.734							F	stimates	of Ga	amma Para	meters	usina l	KM Fst	imate	25							
Variance (KM) 3.008 SE of Mean (KM) 0.386												uomig i								SD (K	M)	1 734
Solid							١.											SF		-		
1.891 1.8								`	Ĺ												- 1	
S58																						
80% gamma percentile (KM) 0.686 90% gamma percentile (KM) 1.891							t		-									t				
95% gamma percentile (KM) 3.529 99% gamma percentile (KM) 8.298 Gamma Kaplan-Meier (KM) Statistics Gamma Kaplan-Meier (KM) Statistics Approximate Chi Square Value (6.49, α) 1.897 Adjusted Chi Square Value (6.49, β) 1.718 95% Gamma Approximate KM-UCL (use when n>=50) 2.188 95% Gamma Adjusted KM-UCL (use when n<50) 2.416 Lognormal GOF Test on Detected Observations Only Shapiro Wilk Test Statistic 0.786 Shapiro Wilk GOF Test S% Shapiro Wilk Critical Value 0.859 Detected Data Not Lognormal at 5% Significance Level Lilliefors Test Statistic 0.282 Lilliefors GOF Test S% Lilliefors Critical Value 0.243 Detected Data Not Lognormal at 5% Significance Level Detected Data Not Lognormal at 5% Significance Level						30% na		•	- 1							Q	0% n:			•	1	
Samma Kaplan-Meier (KM) Statistics Gamma Kaplan-Meier (KM) Statistics						_		,													- 1	
Gamma Kaplan-Meier (KM) Statistics563Approximate Chi Square Value (6.49, α)1.897Adjusted Chi Square Value (6.49, β)1.71856495% Gamma Approximate KM-UCL (use when n>=50)2.18895% Gamma Adjusted KM-UCL (use when n<50)							 p		,	2.020							9	р			/	
Approximate Chi Square Value (6.49, α) 1.897 Adjusted Chi Square Value (6.49, β) 1.718 95% Gamma Approximate KM-UCL (use when n>=50) 2.188 95% Gamma Adjusted KM-UCL (use when n<50) 2.416 10565 10566 Lognormal GOF Test on Detected Observations Only 10567 Shapiro Wilk Test Statistic 0.786 Shapiro Wilk GOF Test 10568 5% Shapiro Wilk Critical Value 0.859 Detected Data Not Lognormal at 5% Significance Level 10569 Lilliefors Test Statistic 0.282 Lilliefors GOF Test 10570 5% Lilliefors Critical Value 0.243 Detected Data Not Lognormal at 5% Significance Level 10571 Detected Data Not Lognormal at 5% Significance Level								G	amm	a Kaplan-M	eier (KI	M) Stat	tistics									
95% Gamma Approximate KM-UCL (use when n>=50) 2.188 95% Gamma Adjusted KM-UCL (use when n<50) 2.416 Solid				Appro	oximate	Chi S	guare V			-	(131	,			Adii	usted	Chi S	Square \	Value	(6.49	, β)	1.718
565 566 Lognormal GOF Test on Detected Observations Only 567 Shapiro Wilk Test Statistic 0.786 Shapiro Wilk GOF Test 568 5% Shapiro Wilk Critical Value 0.859 Detected Data Not Lognormal at 5% Significance Level 569 Lilliefors Test Statistic 0.282 Lilliefors GOF Test 570 5% Lilliefors Critical Value 0.243 Detected Data Not Lognormal at 5% Significance Level 571 Detected Data Not Lognormal at 5% Significance Level		95%						-					95% G	amm	-					-		
566Lognormal GOF Test on Detected Observations Only567Shapiro Wilk Test Statistic0.786Shapiro Wilk GOF Test5685% Shapiro Wilk Critical Value0.859Detected Data Not Lognormal at 5% Significance Level569Lilliefors Test Statistic0.282Lilliefors GOF Test5705% Lilliefors Critical Value0.243Detected Data Not Lognormal at 5% Significance Level571Detected Data Not Lognormal at 5% Significance Level							,		,									,,,,,				
Shapiro Wilk Test Statistic 0.786 Shapiro Wilk GOF Test 568 5% Shapiro Wilk Critical Value 0.859 Detected Data Not Lognormal at 5% Significance Level 569 Lilliefors Test Statistic 0.282 Lilliefors GOF Test 570 5% Lilliefors Critical Value 0.243 Detected Data Not Lognormal at 5% Significance Level 571 Detected Data Not Lognormal at 5% Significance Level							L	_ognormal	I GO	F Test on D	etected	Obse	rvation	s Onl	ly							
568 5% Shapiro Wilk Critical Value 0.859 Detected Data Not Lognormal at 5% Significance Level Lilliefors Test Statistic 0.282 Lilliefors GOF Test Solution 5% Lilliefors Critical Value 0.243 Detected Data Not Lognormal at 5% Significance Level Detected Data Not Lognormal at 5% Significance Level						Shan									•	piro \	Wilk G	OF Tes	 st			
569 Lilliefors Test Statistic 0.282 Lilliefors GOF Test 570 5% Lilliefors Critical Value 0.243 Detected Data Not Lognormal at 5% Significance Level 571 Detected Data Not Lognormal at 5% Significance Level					5%							De	tected	Data		•				icance	Leve	el
570 5% Lilliefors Critical Value 0.243 Detected Data Not Lognormal at 5% Significance Level 571 Detected Data Not Lognormal at 5% Significance Level																						
571 Detected Data Not Lognormal at 5% Significance Level												De	tected	Data					Signif	icance	Leve	<u>.</u>
571											l nal at 5°					-9.1						
5/2												9'										
	5/2																					

	Α	В	С		D		Е	F	G		H					J		K	L
573								S Statistics	Using In	nputed	d Non-	Detects	3						
574						-	nal Scale											g Scale	-2.171
575						-	nal Scale											g Scale	1.533
576		95% t U	JCL (assume										S	5%		centile Bo		-	1.32
577							trap UCI									95% Boo	otstra	p t UCL	2.4
578				95%	6 H-UC	CL (L	og ROS	1.15											
579																			
580			Statis	stics u	-			on Logged I	Data and	Assu	ıming l	Lognori	mal Di	stribu	utior				
581							(logged	<i>'</i>										eo Mean	0.112
582							(logged			95% Critical H Value (KM 95% H-UCL (KM							•	3.247	
583			KM Standar	rd Eri				1			95% H-UCL (KM							•	0.879
584							(logged	´					9	5% (Criti	ical H Val	ue (K	(M-Log)	3.247
585			KM Standar	rd Eri	or of N	lean	(logged) 0.327											
586																			
587								DL/2	Statistics	i									
588			DL/2 N										DL/2 L	.og-T	Γran	nsformed			
589						-	nal Scale											g Scale	-2.135
590						-	nal Scale											g Scale	1.449
591				,			ormality	<i>'</i>									₃ H-S	stat UCL	0.947
592			DL/2 i	is not	a reco	mme	ended m	ethod, provi	ded for o	ompa	risons	and his	storica	l rea	son	ıs			
593																			
594							-	etric Distribu											
595				Da	ta do n	ot fo	ollow a D	iscernible D	istributio	n at 5	% Sig	nificano	e Leve	əl					
596																			
597								Suggested	UCL to	Use									
598			95	5% KI	И (Che	bysł	nev) UCI	2.323											
599																			
600	1	Note: Sugges	_	-					re provided to help the user to select the most appropriate 9								95% UCI	L	
601								sed upon da											
602			mmendations											_					
603	Но	wever, simul	lations result	ts will	not co	ver a	all Real \	Norld data s	ets; for a	dditio	nal ins	sight the	user	may	wa	nt to cons	sult a	statistic	ian.
604																			

1	A B C	D E UCL Statis	F tics for Unce	G ensored Full Data	H a Sets	I	J	K	L
2									
3	User Selected Options	s							
	Date/Time of Computation	ProUCL 5.12/28/2018 7:	14:24 PM						
<u>4</u> 5	From File	5034.01 Organics, Log P	ond.xls						
6	Full Precision	OFF							
7	Confidence Coefficient	95%							
8	Number of Bootstrap Operations	2000							
9	<u> </u>								
10									
	DRO								
11 12									
13			General	Statistics					
	Tota	I Number of Observations	12			Numbe	r of Distinct	Observations	12
14						Number	r of Missing	Observations	1
15		Minimum	18				9	Mean	98.67
16		Maximum	594					Median	62
17		SD	157.5				Std	Error of Mean	45.48
18		Coefficient of Variation	1.597					Skewness	3.341
19		SSSSIGHT ST VARIABION	1.007					2.0	
20			Normal C	OF Test					
21	9	Shapiro Wilk Test Statistic	0.46		9	hapiro Wi	lk GOF Tes	t	
22		Shapiro Wilk Critical Value	0.859				5% Significa		
23	5 % 3	Lilliefors Test Statistic	0.859		Data NOLI		GOF Test	41100 LEVEI	
24	ı	5% Lilliefors Critical Value	0.456		Data Not N		5% Significa	ance Level	
25	,			% Significance L		vormal at	o /o oigiiiici	unice Level	
26		Data Not	Normal at 5	76 Significance L	.evei				
27		Λοι	cumina Norn	nal Distribution					
28	95% N	ormal UCL	Summy Norm		95% 11	Cl e (Adiu	sted for Ske	awneee)	-
29	357014	95% Student's-t UCL	180.3					(Chen-1995)	220.3
30		95 % Student s-t OCL	100.5					ohnson-1978)	187.7
31						3 70 IVIOGIII	eu-i OCL (3	01113011-1370)	107.7
32			Gamma (OF Test					
33		A-D Test Statistic	1.414	JOI 1691	Andorso	n_Darling	Gamma G(NF Teet	
34		5% A-D Critical Value	0.754	Data				ignificance Lev	ol .
35		K-S Test Statistic	0.754	Data			v Gamma (_	<u>C</u> 1
36		5% K-S Critical Value	0.359	Dota				ignificance Lev	ol
37						מ הואפורי	ieu ai 5% S	igninicatice Lev	<u>C1</u>
38		Data Not Gamn	iia vistribute	d at 5% Significa	ance Level				
39			Gamma	Statistics					
40		k bot /MLF\	1.115	Siduoiles		L.	etar (bias s	orrected MI EV	0.892
41		k hat (MLE)					•	orrected MLE)	
42		Theta hat (MLE)	88.48			ı neta	•	orrected MLE)	110.6
43		nu hat (MLE)	26.76				-	ias corrected)	21.41
44	N	ILE Mean (bias corrected)	98.67				-	oias corrected)	104.5
45					Ap			e Value (0.05)	11.89
46	Adju	sted Level of Significance	0.029			A	gjusted Chi	Square Value	10.83
47									
48				ma Distribution					
49	95% Approximate Gamm	a UCL (use when n>=50))	177.6		95% Adju	sted Gamı	ma UCL (us	se when n<50)	195.1
50									
51		 	Lognormal	GOF Test					
52		Shapiro Wilk Test Statistic	0.85		Shapiro	Wilk Log	normal GO	F Test	
							·	-	

53	Α		В		Ç		napiro	D Wilk	Critic	E cal Valu	е	F 0.859		G		H Data N	Not L	ogno	l ormal	at 5%	J 6 Sign	ifican		K Level	L	
54							Lil	liefors	Test	t Statisti	С	0.268					Lillie	efors	Logr	orma	al GOF	- Test	t			
55						59	% Lill	iefors	Critic	cal Valu	е	0.243				Data N	Not L	ogno	rmal	at 5%	6 Sign	ifican	ce L	evel		
56									D	ata Not	Logn	ormal at	t 5%	Signific	cano	ce Leve	el									
57																										
58											Lo	ognorma	al St	atistics												
59						N	Minin	num of	f Log	ged Dat	a	2.89									Mean	of log	gged	d Data	4.08	3
60						N	1axin	num of	f Log	ged Dat	а	6.387									SD	of log	gged	d Data	0.88	36
61											"		,													
62										As	sumin	ng Logno	orma	al Distril	butio	on										
63										% H-UC		80.7									•	•) UCL	152.2	
64										UE) UC		83.1						,	97.5%	6 Che	ebyshe	≀M) v€	/UE) UCL	226	
65						99% (Cheb	yshev	(MV	UE) UC	L 3	10.3														
66																										
67										•		Distribu														
68									Data	a do not	follov	w a Disc	erni	ble Dist	ribu	tion (0.	.05)									
69																										
70										•		etric Dis	stribu	ution Fre	ee U	ICLs										
71										CLT UC		73.5												e UCL	180.3	
72										trap UC		68.8												-t UCL	484.8	
73										trap UC		53.5							95%	Perd	centile	Boots	strap	p UCL	187.4	
74										trap UC		37.7													<u></u>	
75								•		Sd) UC		35.1									•	•		I) UCL	296.9	
76					97.5	% Ch	ebys	nev(M	lean,	Sd) UC	L 38	82.7						ç	9% C	Cheby	/shev(Mean	, Sd	I) UCL	551.2	
77											0															
78					OF)/ Oh-	ما در د حا	/NA		C4/ 11C		ggested	UC	L to Use	e											
79					957	% Che	ebysr	iev (ivi	iean,	Sd) UC	L Z	96.9													L	
80		Not	to: Sug	aosti	one r	ogardi	ina tk	o solo	action	of a QF	5% 116	CL are p	rovi	dod to k	oln	the us	or to	colo	ct tho	moc	t appr	opriot	0 OF	:% LIC		
81		INO	ie. Sug	gesu	0115 11							upon da									т аррг	эрпац	- 9 5			
82		Th	nasa ra	comr	nend							of the sir									aichle	and I		(2006)		
83												d data se												. ,		
84			7701, 011			· ooun						a data ot	<i>-</i>			ai iiioig			J. 111G	<i>,</i>						
85																										
86	ORO																									
07																										
88 89											(General	l Sta	tistics												
90						Total	Num	ber of	Obs	ervation	ıs ·	11						١	lumb	er of	Distino	ct Obs	serv	ations	11	
91																		N	lumbe	er of l	Missin	ıg Obs	serv	ations	0	
92										Minimur	n :	35												Mean	96.6	4
93									N	/laximur	n 16	60											V	1edian	95	
94										SI	D ;	38.91									Sto	d. Errc	or of	Mean	11.7	′3
95							Со	efficie	nt of	Variatio	n	0.403											Skev	wness	-0.02	17
96																										=
97											l	Normal (GOF	= Test												=
98						Sł	hapir	o Wilk	Test	t Statisti	ic	0.98						Shap	oiro W	/ilk G	OF Te	est				
99					į	5% Sh	napiro	Wilk	Critic	cal Valu	е	0.85				Data a	appea	ar No	rmal	at 5%	% Sign	ifican	ce L	evel		
100							Lil	liefors	Test	Statisti	С	0.102						Lil	liefors	GOI	F Test	į				
101						59	% Lill	iefors	Critic	cal Valu	е	0.251				Data a	арреа	ar No	rmal	at 5%	% Sign	ifican	ce L	evel		
102									D	ata app	ear N	ormal a	t 5%	Signifi	can	ce Leve	əl					-				
103																										
104										Α	ssum	ing Nor	mal	Distribu	ıtion)						-				

	105	Α	В	95% No	D ormal UCL	Е	F	G	Н 95	5% UCLs	(Adjus	J ted for SI		K	L
Comman COF Test Comman COF Test	106				95% Stu	dent's-t UCL	117.9				•		•	′	
Camma CoFTest	107						<u> </u>			95% I	Modifie	d-t UCL ((Johnson	-1978)	117.9
100	108														
11	109							GOF Test							
112 N.S. Test Statistic 0.131 Kolmogorov-Smirnov Gamma GOF Test	110														
11	111							Detected							e Level
	112									-					
15	113											stributed	at 5% Si	gnificano	e Level
116	114				Detected	i data appear	Gamma Dis	tributed at 5%	Significa	ance Lev	el				
117	115														
The table The	116							Statistics							
116	117											•			
1910 MILE Mean (bias corrected) 96.64 Approximate Chi Square Value (0.05) 46.84 121	118					` ′				1	Theta s	•		- 1	
Approximate Chi Square Value (0.05) 72.34	119					` '							•	,	
Adjusted Level of Significance 0.0278	120			М	LE Mean (bia	as corrected)	96.64						•	,	
Assuming Gamma Distribution 95% Adjusted Gamma UCL (use when n<0) 130.6	121									Approx				, ,	
Assuming Gamma Distribution	122			Adju	sted Level of	Significance	0.0278				Ad	justed Ch	ni Square	Value	69.29
	123														
Lognormal GOF Test	124							ma Distributio							
Lognormal GOF Test	125	9	5% Approxim	nate Gamma	a UCL (use w	/hen n>=50))	125.1		95% <i>F</i>	Adjusted	Gamn	าล UCL (เ	use when	n<50)	130.6
127	126														
129 5% Shapiro Wilk Critical Value 0.85 Data appear Lognormal at 5% Significance Level 130	127							GOF Test							
139	128														
131	129			5% S						•		-		e Level	
132 Data appear Lognormal at 5% Significance Level	130														
132 133 134 135 136 137 138 139	131			5							normal	at 5% Sig	gnificance	e Level	
134	132					Data appear	Lognormal a	at 5% Significa	ance Leve	el					
135 Minimum of Logged Data 3.555 Mean of logged Data 4.482 136	133							1.01-4-4							
Solid Soli	134				Minimum of	Langed Date		Statistics				Maan	-f	d Data	4.400
137	135														
138	136				waximum of i	Logged Data	5.075					90	or logge	a Data	0.469
139	137						ina I nana	maal Diatributi							
140 95% Chebyshev (MVUE) UCL 159 97.5% Chebyshev (MVUE) UCL 185.5 141 99% Chebyshev (MVUE) UCL 237.6 142	138							mai Dismbuu	UII		000/ 0	Shahi aha	/N/N /I IF	-) 1101	120.0
141	139			OE9/						0		•	•	,	
141	140				• •	,				9	17.5% (riebysne	ev (IVIVUE	E) UCL	100.0
Nonparametric Distribution Free UCL Statistics	141			99%	Chebysnev (INI A OE) OCT	237.0								
144 Data appear to follow a Discernible Distribution at 5% Significance Level 145 146	142					Nonnarama	tric Dietribus	ion Free LICI	Statistics	•					
145 146 Nonparametric Distribution Free UCLs 147 95% CLT UCL 115.9 95% Jackknife UCL 117.9 148 95% Standard Bootstrap UCL 114.9 95% Bootstrap-t UCL 117.4 149 95% Hall's Bootstrap UCL 116.3 95% Percentile Bootstrap UCL 115.5 150 95% BCA Bootstrap UCL 114.7 151 90% Chebyshev(Mean, Sd) UCL 131.8 95% Chebyshev(Mean, Sd) UCL 147.8 152 97.5% Chebyshev(Mean, Sd) UCL 169.9 99% Chebyshev(Mean, Sd) UCL 213.4 153 154 Suggested UCL to Use 15% Student's-t UCL 117.9 117.9	143				Data annea	•					evel				
Nonparametric Distribution Free UCLs 147 95% CLT UCL 115.9 95% Jackknife UCL 117.9 148 95% Standard Bootstrap UCL 114.9 95% Bootstrap-t UCL 117.4 149 95% Hall's Bootstrap UCL 116.3 95% Percentile Bootstrap UCL 115.5 150 95% BCA Bootstrap UCL 114.7 114.7 114.7 114.8<	144				nara ahhea		VIGORELLIINIE D	iou iouuoii at c	, /o Olgi ill	iicalice L					
147 95% CLT UCL 115.9 95% Jackknife UCL 117.9 148 95% Standard Bootstrap UCL 114.9 95% Bootstrap-t UCL 117.4 149 95% Hall's Bootstrap UCL 116.3 95% Percentile Bootstrap UCL 115.5 150 95% BCA Bootstrap UCL 114.7 151 90% Chebyshev(Mean, Sd) UCL 131.8 95% Chebyshev(Mean, Sd) UCL 147.8 152 97.5% Chebyshev(Mean, Sd) UCL 169.9 99% Chebyshev(Mean, Sd) UCL 213.4 153 154 Suggested UCL to Use 155 95% Student's-t UCL 117.9	145					Nonnar	ametric Diet	ribution Free I	ICI e						
147 148 95% Standard Bootstrap UCL 114.9 95% Bootstrap-t UCL 117.4 149 95% Hall's Bootstrap UCL 116.3 95% Percentile Bootstrap UCL 115.5 150 95% BCA Bootstrap UCL 114.7 151 90% Chebyshev(Mean, Sd) UCL 131.8 95% Chebyshev(Mean, Sd) UCL 147.8 152 97.5% Chebyshev(Mean, Sd) UCL 169.9 99% Chebyshev(Mean, Sd) UCL 213.4 153 154 Suggested UCL to Use 155 95% Student's-t UCL 117.9	146				QF	•		iibaabii i 166 (Q5%	Jackknif	e I ICI	117 9
149 95% Hall's Bootstrap UCL 116.3 95% Percentile Bootstrap UCL 115.5 150 95% BCA Bootstrap UCL 114.7 151 90% Chebyshev(Mean, Sd) UCL 131.8 95% Chebyshev(Mean, Sd) UCL 147.8 152 97.5% Chebyshev(Mean, Sd) UCL 169.9 99% Chebyshev(Mean, Sd) UCL 213.4 153 154 Suggested UCL to Use 155 95% Student's-t UCL 117.9				Q5%											
149 150 95% BCA Bootstrap UCL 114.7 151 90% Chebyshev(Mean, Sd) UCL 131.8 95% Chebyshev(Mean, Sd) UCL 147.8 152 97.5% Chebyshev(Mean, Sd) UCL 169.9 99% Chebyshev(Mean, Sd) UCL 213.4 153 154 Suggested UCL to Use 155 95% Student's-t UCL 117.9	148					·					95% =				
151 90% Chebyshev(Mean, Sd) UCL 131.8 95% Chebyshev(Mean, Sd) UCL 147.8 152 97.5% Chebyshev(Mean, Sd) UCL 169.9 99% Chebyshev(Mean, Sd) UCL 213.4 153 154 Suggested UCL to Use 155 95% Student's-t UCL 117.9	149					·					JJ /0 F	CICCILLIC	ביייייייייייייייייייייייייייייייייייייי	ip OOL	110.0
151 97.5% Chebyshev(Mean, Sd) UCL 169.9 99% Chebyshev(Mean, Sd) UCL 213.4 153 Suggested UCL to Use 155 95% Student's-t UCL 117.9						·				Q.	5% Ch	ehyshev/	Mean So	4) UCI	147.8
153 154 Suggested UCL to Use 155 95% Student's-t UCL 117.9												• •		,	
Suggested UCL to Use 155 95% Student's-t UCL 117.9					,	, 00, 001	. 55.5				. , o Oil	y oi i c v (., JUL	2.0.4
155 95% Student's-t UCL 117.9							Sunnested	UCL to Use							
155					95% Stu										
156															
	156														

	Α	B Note: Curre	C	D D	E	F (UCL are re	G	H		J nost appropriat	K 050/ LICI	L
157		Note: Sugge		Recommenda							e 95% UCL	
158		Those reco				·				ss. , Maichle, and I	00 (2006)	
159					•				•	want to consult	, ,	
160	'	nowever, sinic	alations resu	its will flot cov	vei all Neal V	vonu uata se	is, ioi additio	orial irisigni	ule usel illay	want to consum	i a sialislicio	111.
161		Note: For	highly nega	tively-skewed	l data confid	ence limite (4	a Chen k	ohneon Lo	normal and	Gamma) may r	not he	
162		Note. For		Chen's and J		•					lot be	
163			Tellable.	Onen a and a		uious pioviu	e aujustinen	to for positiv	ely skewed d	ala sels.		
164												
165	DCD											
166												
167						General	Statistics					
168			Tota	al Number of (Observations				Numbe	r of Distinct Obs	servations	1
169									Numbe	r of Missing Obs	servations	11
170					Minimum	1.6					Mean	1.6
171					Maximum	1.6					Median	1.6
172												
173 174					Warning: Th	nis data set d	only has 1 ob	servations!				
175			Da	ita set is too s					and estimate	es!		
176					The data set	for variable	PCP was not	t processed	!			
177												
178			It is sugg	gested to colle	ect at least 8	to 10 observ	ations before	using thes	e statistical n	nethods!		
179		If p	ossible, con	npute and coll	ect Data Qua	ality Objective	es (DQO) ba	sed sample	size and ana	alytical results.		
180												
181												
182												
183	TEQ											
	TEQ											
183	TEQ					General	Statistics					
183 184			Tota	al Number of (Observations	ı	Statistics			r of Distinct Obs		3
183 184 185			Tota	al Number of (3	Statistics			r of Distinct Obs		0
183 184 185 186			Tota	al Number of C	Minimum	38.7	Statistics				servations	73.93
183 184 185 186 187			Tota	al Number of (Minimum Maximum	3 38.7 142	Statistics			r of Missing Ob	servations Mean Median	73.93 41.1
183 184 185 186 187 188			Tota		Minimum Maximum SD	3 38.7 142 58.96	Statistics			r of Missing Obs	Mean Median or of Mean	0 73.93 41.1 34.04
183 184 185 186 187 188 189			Tota		Minimum Maximum	3 38.7 142	Statistics			r of Missing Obs	servations Mean Median	73.93 41.1
183 184 185 186 187 188 189				Coefficien	Minimum Maximum SD t of Variation	3 38.7 142 58.96 0.797			Numbe	r of Missing Obs Std. Erro	Mean Median or of Mean	0 73.93 41.1 34.04
183 184 185 186 187 188 189 190			Note: Sam	Coefficien	Minimum Maximum SD t of Variation	3 38.7 142 58.96 0.797	collected us		Numbe	Std. Erro	Mean Median or of Mean	0 73.93 41.1 34.04
183 184 185 186 187 188 189 190 191 192			Note: Sam guidance p	Coefficien nple size is sn rovided in ITF	Minimum Maximum SD t of Variation nall (e.g., <10	3 38.7 142 58.96 0.797 0), if data are	collected us	12) to comp	Numbe proach, you s	Std. Erro	Mean Median or of Mean	0 73.93 41.1 34.04
183 184 185 186 187 188 189 190 191 192 193 194 195			Note: Sam guidance p For	Coefficien nple size is sn rovided in ITF	Minimum Maximum SD t of Variation nall (e.g., <10 RC Tech Reg	38.7 142 58.96 0.797 0), if data are Guide on IS	collected us M (ITRC, 20 shev UCL to	12) to comp	Numbe proach, you s pute statistics PC (ITRC, 20	Std. Erros hould use of interest.	Mean Median or of Mean	0 73.93 41.1 34.04
183 184 185 186 187 188 189 190 191 192 193 194 195 196			Note: Sam guidance p For	Coefficien nple size is sn rovided in ITF	Minimum Maximum SD t of Variation nall (e.g., <10 RC Tech Reg	38.7 142 58.96 0.797 0), if data are Guide on IS	collected us M (ITRC, 20 shev UCL to	12) to comp	Numbe proach, you s pute statistics PC (ITRC, 20	Std. Erros hould use of interest.	Mean Median or of Mean	0 73.93 41.1 34.04
183 184 185 186 187 188 190 191 192 193 194 195 196			Note: Sam guidance p For	Coefficien nple size is sn rovided in ITF	Minimum Maximum SD t of Variation nall (e.g., <10 RC Tech Reg	38.7 142 58.96 0.797 O), if data are Guide on IS o use Chebys	collected us M (ITRC, 20 shev UCL to	12) to comp	Numbe proach, you s pute statistics PC (ITRC, 20	Std. Erros hould use of interest.	Mean Median or of Mean	0 73.93 41.1 34.04
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197			Note: Sam guidance p For Chebyshe	Coefficien nple size is sn rovided in ITF example, you v UCL can be	Minimum Maximum SD t of Variation nall (e.g., <10 RC Tech Reg u may want to	38.7 142 58.96 0.797 O), if data are Guide on IS o use Chebys sing the Normal C	collected us M (ITRC, 20 shev UCL to	12) to comp	Proach, you soute statistics PC (ITRC, 20 Options of P	Std. Erros hould use of interest. 12). roUCL 5.1	Mean Median or of Mean	0 73.93 41.1 34.04
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198			Note: Sam guidance p For Chebyshe	Coefficien nple size is sn rovided in ITF example, you by UCL can be	Minimum Maximum SD t of Variation mall (e.g., <10 RC Tech Reg u may want to e computed u	38.7 142 58.96 0.797 0), if data are Guide on IS o use Chebys sing the Non Normal C	collected us M (ITRC, 20 shev UCL to	12) to comp estimate Ef	oroach, you soute statistics PC (ITRC, 20 Options of P	Std. Erro Std. Erro hould use of interest. 12). roUCL 5.1	Mean Median or of Mean Skewness	0 73.93 41.1 34.04
183 184 185 186 187 188 190 191 192 193 194 195 196 197 198 199 200			Note: Sam guidance p For Chebyshe	Coefficien nple size is sn rovided in ITF example, you v UCL can be	Minimum Maximum SD t of Variation nall (e.g., <10 RC Tech Reg u may want to e computed u Test Statistic Critical Value	3 38.7 142 58.96 0.797 0), if data are Guide on IS o use Chebys sing the Non Normal C 0.767 0.767	collected us M (ITRC, 20 shev UCL to	12) to comp estimate Ef	Proach, you soute statistics PC (ITRC, 20) Options of P Shapiro With the sear Normal a	Std. Erros hould use of interest. 12). roUCL 5.1 Ik GOF Test at 5% Significan	Mean Median or of Mean Skewness	0 73.93 41.1 34.04
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200			Note: Sam guidance p For Chebyshe	Coefficien nple size is sn rovided in ITF example, you v UCL can be Shapiro Wilk C Lilliefors	Minimum Maximum SD t of Variation mall (e.g., <10 RC Tech Reg u may want to e computed u Test Statistic Critical Value Test Statistic	3 38.7 142 58.96 0.797 0), if data are Guide on IS o use Chebys sing the Non Normal C 0.767 0.767 0.378	collected us M (ITRC, 20 shev UCL to	12) to comp estimate EF and All UCL Data app	Numbe Proach, you so the statistics of P Shapiro Witter Normal at Lilliefors	Std. Erros hould use of interest. 12). roUCL 5.1 Ik GOF Test at 5% Significan GOF Test	Mean Median or of Mean Skewness	0 73.93 41.1 34.04
183 184 185 186 187 190 191 192 193 194 195 196 197 198 200 201 202			Note: Sam guidance p For Chebyshe	Coefficien nple size is sn rovided in ITF example, you v UCL can be	Minimum Maximum SD t of Variation nall (e.g., <10 RC Tech Reg u may want to e computed u Test Statistic Critical Value Test Statistic Critical Value	3 38.7 142 58.96 0.797 0), if data are Guide on IS o use Chebys sing the Non Normal C 0.767 0.767 0.378 0.425	collected us M (ITRC, 20 shev UCL to aparametric a	12) to comp estimate EF and All UCL Data app	Numbe Proach, you so the statistics of P Shapiro Witter Normal at Lilliefors	Std. Erros hould use of interest. 12). roUCL 5.1 Ik GOF Test at 5% Significan	Mean Median or of Mean Skewness	0 73.93 41.1 34.04
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203			Note: Sam guidance p For Chebyshe	Coefficien nple size is sn rovided in ITF example, you v UCL can be Shapiro Wilk C Lilliefors	Minimum Maximum SD t of Variation nall (e.g., <10 RC Tech Reg u may want to e computed u Test Statistic Critical Value Test Statistic Critical Value	3 38.7 142 58.96 0.797 0), if data are Guide on IS o use Chebys sing the Non Normal C 0.767 0.767 0.378 0.425	collected us M (ITRC, 20 shev UCL to	12) to comp estimate EF and All UCL Data app	Numbe Proach, you so the statistics of P Shapiro Witter Normal at Lilliefors	Std. Erros hould use of interest. 12). roUCL 5.1 Ik GOF Test at 5% Significan GOF Test	Mean Median or of Mean Skewness	0 73.93 41.1 34.04
183 184 185 186 187 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204			Note: Sam guidance p For Chebyshe	Coefficien nple size is sn rovided in ITF example, you v UCL can be Shapiro Wilk C Lilliefors	Minimum Maximum SD t of Variation nall (e.g., <10 RC Tech Reg u may want to e computed u Test Statistic Critical Value Test Statistic Critical Value Data appe	3 38.7 142 58.96 0.797 0), if data are Guide on IS o use Chebys sing the Non Normal C 0.767 0.767 0.378 0.425 ar Normal at	collected us M (ITRC, 20 shev UCL to parametric a	12) to comp estimate EF and All UCL Data app Data app ance Level	Numbe Proach, you so the statistics of P Shapiro Witter Normal at Lilliefors	Std. Erros hould use of interest. 12). roUCL 5.1 Ik GOF Test at 5% Significan GOF Test	Mean Median or of Mean Skewness	0 73.93 41.1 34.04
183 184 185 186 187 188 190 191 192 193 194 195 196 197 198 200 201 202 203 204 205			Note: Sam guidance p For Chebyshe	Coefficien nple size is sm rovided in ITF example, you v UCL can be Shapiro Wilk Chapiro Wilk Lilliefors 5% Lilliefors	Minimum Maximum SD t of Variation nall (e.g., <10 RC Tech Reg u may want to e computed u Test Statistic Critical Value Test Statistic Critical Value Data appe	3 38.7 142 58.96 0.797 0), if data are Guide on IS o use Chebys sing the Non Normal C 0.767 0.767 0.378 0.425 ar Normal at	collected us M (ITRC, 20 shev UCL to aparametric a	12) to comp estimate EF and All UCL Data app Data app ance Level	Numbe Proach, you so the statistics PC (ITRC, 20 Options of P Shapiro With the statistics Lilliefors Bear Normal at the statistics Company of the sta	Std. Erro Std. E	Mean Median or of Mean Skewness	0 73.93 41.1 34.04
183 184 185 186 187 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206			Note: Sam guidance p For Chebyshe	Coefficien nple size is sn rovided in ITF example, you v UCL can be Shapiro Wilk Chapiro Wilk Lilliefors 5% Lilliefors (Minimum Maximum SD t of Variation nall (e.g., <10 RC Tech Reg u may want to e computed u Test Statistic Critical Value Test Statistic Critical Value Data appe	3 38.7 142 58.96 0.797 0), if data are Guide on IS o use Chebys sing the Non Normal C 0.767 0.767 0.378 0.425 ar Normal at	collected us M (ITRC, 20 shev UCL to parametric a	12) to comp estimate EF and All UCL Data app Data app ance Level	Numbe proach, you solute statistics PC (ITRC, 20 Options of P Shapiro Willier Normal a Lilliefors pear Normal a	Std. Erro Std. E	Mean Median or of Mean Skewness Mece Level cee Level	0 73.93 41.1 34.04 1.729
183 184 185 186 187 188 190 191 192 193 194 195 196 197 198 200 201 202 203 204 205			Note: Sam guidance p For Chebyshe	Coefficien nple size is sn rovided in ITF example, you v UCL can be Shapiro Wilk Chapiro Wilk Lilliefors 5% Lilliefors (Minimum Maximum SD t of Variation nall (e.g., <10 RC Tech Reg u may want to e computed u Test Statistic Critical Value Test Statistic Critical Value Data appe	3 38.7 142 58.96 0.797 0), if data are Guide on IS o use Chebys sing the Non Normal C 0.767 0.767 0.378 0.425 ar Normal at	collected us M (ITRC, 20 shev UCL to parametric a	12) to comp estimate EF and All UCL Data app Data app ance Level	Numbe Proach, you so the statistics of Propositions of Propos	Std. Erro Std. E	Mean Median or of Mean Skewness Mean Median or of Mean Skewness Mean Skewness Mean Median Med	0 73.93 41.1 34.04

	Α		В		С		D		E	F	G		Н		l		J		K	L
209										Gommo	GOF Tes	.+								
210									Not En	ough Data			Foet							
211									NOL EII	ough Data	o renom	GOF	1631							
212										Gamma	Statistics	•								
213								k hat	(MLE)		Clausics	•			k	c star i	(hias co	orrecte	d MLE)	N/A
214							Th	eta hat									•		ed MLE)	N/A
215							- '''		(MLE)						THELE		•		rrected)	N/A
216					N	AI E M	ean (h	ias cor	, ,								•		rrected)	N/A
217					ıv	ILL IVI	ean (b	ias coi	recteu)	IN/A				Δnnr	ovima		•		e (0.05)	N/A
218					Δdiu	ıstad l	evel o	f Signif	ficance	N/A				Дррг					e Value	N/A
219					Auju	ioteu L	-0 101 0	n Olgilli	icaricc	INIT						lajast	cu Om	Oquai	c value	11//
220									Δς	suming Gai	nma Distr	ibution								
221		95% <i>A</i>	Approxir	mate (Gamm	a UCI	(use	when r		_		ibadon		Adiuste	d Gan	nma l	ICI (us	e whe	n n<50)	N/A
222		30707	фріодіі	- Indic	dumm	10 001	_ (000	WIICITT	1- 00))	14/71			30707	tajaoto	a dan		70L (US	WIIC	1111 100)	14// (
223										Lognorm	al GOF Te	et								
224						Shanir	n Wilk	Test S	tatistic		1 401 16		Sh	aniro V	Vilk I o	anorn	nal GOI	F Teet		
225								Critica				D:							ce Level	
226					070 0	•		Test S									GOF 1		DO LOVO	
227								Critica				D:							ce Level	
228						0 70 EII	1101010			r Lognorma	at 5% Sid				J. 1011116	ui ui o	70 Olgii		DO LOVO	
229								Data	арроа.	Lognomia		J	2010							
230										Lognorm	al Statistic	```								
231						Minin	num of	Logge	d Data								Mean o	of loan	ed Data	4.109
232								Logge											ed Data	0.734
233								99-		1								99		
234									Ass	uming Logn	ormal Dis	tributio	n							
235								95%	H-UCL						90%	6 Chel	byshev	(MVU	E) UCL	158.6
236					95%	Cheb	yshev	(MVUI	E) UCL	. 197.7							•	•	E) UCL	251.9
237							-	(MVUE									,	•	,	
238 239								`	,											
240								Non	parame	etric Distribu	ıtion Free	UCL S	tatistics							
241						Data	appe	ar to fo	llow a	Discernible	Distribution	n at 59	6 Signif	icance	Level					
241																				
243									Nonpa	rametric Dis	stribution I	Free U	CLs							
							ç	95% CL	T UCL	129.9							95% J	ackkn	ife UCL	173.3
244245					95%	6 Stan	dard E	Bootstra	ap UCL	. N/A						ç	95% Bo	otstra	p-t UCL	N/A
245						95% F	Hall's E	Bootstra	p UCL	N/A					95%	Perc	entile B	Bootstr	ap UCL	N/A
247						95%	BCA E	Bootstra	p UCL	N/A										
248				Ç	90% C	hebys	hev(M	ean, S	d) UCL	. 176.1					95% C	Chebys	shev(M	ean, S	d) UCL	222.3
249				97	.5% C	hebys	hev(M	ean, S	d) UCL	. 286.5					99% C	Chebys	shev(M	ean, S	Sd) UCL	412.6
250										1										<u> </u>
251										Suggested	UCL to U	Jse								
252						9	5% St	udent's	-t UCL											
253										1										<u> </u>
254							R	ecomm	ended	UCL excee	ds the ma	ximum	observ	ation						
255																				
256		Note:	Sugge	stions	regar	ding t	he sele	ection c	of a 959	% UCL are ¡	provided to	o help t	he user	to sele	ect the	most	approp	oriate 9	95% UC	L.
257						Recor	nmend	dations	are ba	sed upon d	ata size, d	ata dis	tributior	, and s	skewn	ess.				
258		The	se recoi	mmer						ults of the s							ichle, a	nd Le	e (2006)	
259	F							-		Vorld data s					_					
260																				
200																				

1	A B C	D E UCL Statis	F tics for Unce	G I	H I Sets	J K	L
2							
	User Selected Options	S					
3	Date/Time of Computation	ProUCL 5.12/28/2018 7:	31:27 PM				
4	From File	5034.01 Organics, Log P	ond 0-2'.xls				
5	Full Precision	OFF					
6	Confidence Coefficient	95%					
7	Number of Bootstrap Operations	2000					
8	Number of Bootstrap Operations	2000					
9							
10	DRO						
	DRO						
12			0	04-41-41			
13	- .		General S	Statistics		1 (D) ii (O) ii	40
14	lota	I Number of Observations	12			nber of Distinct Observations	
15		• • •	40		Nun	nber of Missing Observations	
16		Minimum	18			Mear	
17		Maximum	594			Mediar	-
18		SD	157.5			Std. Error of Mear	
19		Coefficient of Variation	1.597			Skewness	3.341
20							
21			Normal G	OF Test			
22	(Shapiro Wilk Test Statistic	0.46		Shapiro	Wilk GOF Test	
23	5% S	Shapiro Wilk Critical Value	0.859	D	ata Not Norma	at 5% Significance Level	
24		Lilliefors Test Statistic	0.456		Lillief	ors GOF Test	
25	Į	5% Lilliefors Critical Value	0.243	Da	ata Not Norma	at 5% Significance Level	
26		Data Not	Normal at 5	∣ % Significance Lev	/el		
27							
28		Ass	suming Norn	nal Distribution			
29	95% N	ormal UCL			95% UCLs (A	djusted for Skewness)	
		95% Student's-t UCL	180.3		-	usted-CLT UCL (Chen-1995	220.3
30						odified-t UCL (Johnson-1978	
31						,	
32			Gamma (GOF Test			
33		A-D Test Statistic	1.414		Anderson-Dari	ing Gamma GOF Test	
34		5% A-D Critical Value	0.754			ibuted at 5% Significance Le	vel
35		K-S Test Statistic	0.754			irnov Gamma GOF Test	V O1
36		5% K-S Critical Value	0.359		_	imov Gamma GOF Test ibuted at 5% Significance Le	wol
37						ibuted at 5% Significance Le	v C I
38		Data Not Gamn	ia Distribute	d at 5% Significan	CG FGAGI		
39			0	Ctatiatics			
40		1. L . /A AL	Gamma	otaustics		Is name /high name to 1881 TV	0.000
41		k hat (MLE)	1.115			k star (bias corrected MLE)	
42		Theta hat (MLE)	88.48		Th	eta star (bias corrected MLE)	
43		nu hat (MLE)	26.76			nu star (bias corrected)	
44	M	ILE Mean (bias corrected)	98.67			MLE Sd (bias corrected)	
45					Approxin	nate Chi Square Value (0.05	
46	Adju	sted Level of Significance	0.029			Adjusted Chi Square Value	10.83
47							
48		Ass	uming Gam	ma Distribution			
49	95% Approximate Gamm	a UCL (use when n>=50))	177.6	9:	5% Adjusted G	amma UCL (use when n<50	195.1
50				1			
51			Lognormal	GOF Test			
52		Shapiro Wilk Test Statistic	0.85		Shapiro Wilk	Lognormal GOF Test	
JL				I			

53	Α		В		(hapi	D ro Will	k Cri	E itical V		F 0.8	359		G		F Data		l t Log	l norm	al at	t 5%	J Signi	ifican		K .evel		L
54							L	illiefor	rs Te	est Stat	tistic	0.2	268					Li	illiefo	ors Lo	gno	rmal	GOF	Test				
55						5	5% Li	lliefor	s Cri	itical V	'alue	0.2	243				Data	a Not	t Log	norm	al at	t 5%	Signi	ifican	ce L	.evel		
56										Data I	Not L	ognorr	nal at	t 5%	Signifi	can	ce Le	evel										
57																												
58												Logr	norma	al Sta	atistics													
59							Mini	mum d	of Lo	ogged l	Data	2.8	39									ı	Mean	of log	gged	d Data	4	1.08
60						ı	Maxii	mum d	of Lo	ogged l	Data	6.3	387										SD	of log	gged	d Data	(0.886
61												ı																
62											Assu	ıming l	Logno	orma	al Distri	butio	on											
63										5% H-		180.											•	•) UCL		2.2
64								-		IVUE)		183.								97.	5% (Chel	oyshe	v (M\	/UE) UCL	22	6
65						99%	Chel	byshe	v (M	IVUE)	UCL	310.	3															
66																												
67										•					Free U													
68									Da	ata do	not fo	ollow a	Disc	ernil	ble Dist	tribu	ıtion ((0.05	j)									
69																												
70											-			tribu	tion Fr	ee L	JCLs											
71										6 CLT		173.														e UCL		0.3
72										tstrap		170.														t UCL		
73										tstrap		554.								95	5% F	Perc	entile	Boots	stra	p UCL	18	8
74										tstrap		235.																
75								`		n, Sd)		235.														I) UCL		
76					97.5	o% Cr	nebys	shev(I	Mea	n, Sd)	UCL	382.	./							99%	6 Ch	ebys	shev(I	Mean	, Sd	I) UCL	55	1.2
77												0																
78					OF	0/ C L		h / N	11	- 04/	ПСІ			UCI	L to Us	е												
79					95	% Cn	ebys	nev (r	wear	n, Sd)	UCL	296.	9														<u> </u>	
80		Not	te: Sug	aosti	one	rogard	dina t	tho so	locti	on of s	05%	/ LICI	aro ni	rovic	dod to l	aoln	thou	ucor	to co	loct t	ho n	noct	annro	nrint	o 05	:% LIC		
81		INOI	ie. Sug	gesu	OHS I								-		ize, dat								аррго	рпац	e 90		L. ——	
82		Th	nese re	comr	menc																		chla	and I	00	(2006)		
83			ever, sir																							. ,		
84		Tiowc	, vCi , 3ii	Tiulai		icsui	to wii	11100		anii	cai vi	rona a	ata sc	JIJ, 1	or addi	lion	iai ii is	Jigini	110	1301 1	ilay	wan	1 10 00	Jiiouit			iaii.	
85																												
86	ORO																											
0/																												
88												Ge	neral	Stat	tistics													
89						Total	l Nun	nber o	of Ob	servat	tions									Nun	nber	r of E	Distino	t Obs	serv	ations	1	1
90																										ations		
91 92										Minir	num	35											•			Mean		6.64
93										Maxir		160													M	1edian		
93											SD	38.	91										Std	. Erro	or of	Mean	1	1.73
95							С	oefficie	ent c	of Varia	ation		103											5	Skev	wness	-0.	0217
96																												
97												No	rmal (GOF	Test													
98						S	Shapi	ro Wil	lk Te	est Sta	tistic	0.9	98						Sh	apiro	Wil	k GC	OF Te	st				
99						5% S	hapi	ro Will	k Cri	itical V	'alue	0.8	35				Data	а арр	ear	Norm	al a	t 5%	Signi	ifican	ce L	.evel		
100							L	illiefor	rs Te	est Stat	tistic	0.	102							Lillief	ors (GOF	Test					
101						5	5% Li	lliefors	s Cri	itical V	'alue	0.2	251				Data	а арр	ear	Norm	al a	t 5%	Signi	ifican	ce L	evel	-	
102										Data a	appea	ar Norr	nal at	t 5%	Signifi	can	ce Le	evel										
103																												
104											As	suming	Norr	mal	Distribu	utior	า										-	

	105	Α	В	95% No	D ormal UCL	Е	F	G	Н 95	5% UCLs	(Adjus	J ted for S	kewnes	K SS)	L
Comman COF Test Comman COF Test	106				95% Stu	dent's-t UCL	117.9				•		•	1	
Camma CoFTest	107						<u> </u>			95% I	Modifie	d-t UCL	(Johnso	on-1978)	117.9
100	108														
11	109							GOF Test							
112 N.S. Test Statistic 0.131 Kolmogorov-Smirnov Gamma GOF Test	110														
11	111							Detected							ce Level
	112									-					
15	113											stributed	at 5% S	Significan	ce Level
116	114				Detected	i data appear	Gamma Dis	tributed at 5%	Significa	ance Lev	rel .				
117	115														
The table The	116							Statistics							
116	117											,		,	
1910 MILE Mean (bias corrected) 96.64 Approximate Chi Square Value (0.05) 46.84 121	118					` ′				7	Theta s	`		'	
Approximate Chi Square Value (0.05) 72.34	119					` '							•	,	
Adjusted Level of Significance 0.0278	120			MI	LE Mean (bia	as corrected)	96.64						•	,	
Assuming Gamma Distribution 95% Adjusted Gamma UCL (use when n<0) 130.6	121									Approx				, ,	
Assuming Gamma Distribution	122			Adjus	sted Level of	Significance	0.0278				Ad	justed Cl	hi Squa	re Value	69.29
	123														
Lognormal GOF Test	124							ma Distributio		A 1'		110		=1	100.0
Lognormal GOF Test	125	9	5% Approxim	nate Gamma	3 UCL (use w	/hen n>=50))	125.1		95% /	Adjusted	l Gamn	na UCL (i	use whe	en n<50)	130.6
127	126														
129 5% Shapiro Wilk Critical Value 0.85 Data appear Lognormal at 5% Significance Level 130	127							GOF Test							
139	128				·										
131	129			5% SI						•			•	ice Level	
132 Data appear Lognormal at 5% Significance Level 133	130														
132 133 134 135 136 137 138 138 139	131			5 							normal	at 5% Sig	gnifican	ice Level	
134	132					Data appear	Lognormal a	at 5% Significa	ance Leve	el					
135	133							l Oradaria							
Solid Soli	134				Minimum of	Langed Date		Statistics				Maan	fl	ad Data	4.400
137	135													·	
138	136				waximum of i	Logged Data	5.075					30	or logg	jed Data	0.469
139	137						ina I nana	maal Diatributi							
140 95% Chebyshev (MVUE) UCL 159 97.5% Chebyshev (MVUE) UCL 185.5 141 99% Chebyshev (MVUE) UCL 237.6 142	138							rmai Distributi	on		000/ (، ما ما داد	/N/N/I	IE) LICI	120.0
141	139			OE9/						^		•	•	,	
142	140				,					9	77.5% (PUGDAZU	ev (IVIV	JE) UCL	100.0
Nonparametric Distribution Free UCL Statistics	141			99 %	Cilebysilev (INI A OE) OCT	237.0								
144 Data appear to follow a Discernible Distribution at 5% Significance Level 145 146 147 95% CLT UCL 115.9 95% Jackknife UCL 117.9 148 95% Standard Bootstrap UCL 115 95% Bootstrap-t UCL 119 149 95% Hall's Bootstrap UCL 116.4 95% Percentile Bootstrap UCL 114.2 150 95% BCA Bootstrap UCL 115.6 151 90% Chebyshev(Mean, Sd) UCL 131.8 95% Chebyshev(Mean, Sd) UCL 147.8 152 97.5% Chebyshev(Mean, Sd) UCL 169.9 99% Chebyshev(Mean, Sd) UCL 213.4 153 154 155 95% Student's-t UCL 117.9 117.9	142					Nonnarama	tric Dietribus	ion Free LICI	Statistics	2					
145 146 Nonparametric Distribution Free UCLs 147 95% CLT UCL 115.9 95% Jackknife UCL 117.9 148 95% Standard Bootstrap UCL 115 95% Bootstrap-t UCL 119 149 95% Hall's Bootstrap UCL 116.4 95% Percentile Bootstrap UCL 114.2 150 95% BCA Bootstrap UCL 115.6 151 90% Chebyshev(Mean, Sd) UCL 131.8 95% Chebyshev(Mean, Sd) UCL 147.8 152 97.5% Chebyshev(Mean, Sd) UCL 169.9 99% Chebyshev(Mean, Sd) UCL 213.4 153 154 Suggested UCL to Use 158 95% Student's-t UCL 117.9	143				Data annea	•					امریم				
Nonparametric Distribution Free UCLs 147 95% CLT UCL 115.9 95% Jackknife UCL 117.9 148 95% Standard Bootstrap UCL 115 95% Bootstrap+t UCL 119 149 95% Hall's Bootstrap UCL 116.4 95% Percentile Bootstrap UCL 114.2 150 95% BCA Bootstrap UCL 115.6 114.2 151 90% Chebyshev(Mean, Sd) UCL 131.8 95% Chebyshev(Mean, Sd) UCL 147.8 152 97.5% Chebyshev(Mean, Sd) UCL 169.9 99% Chebyshev(Mean, Sd) UCL 213.4 153 Suggested UCL to Use 155 95% Student's-t UCL 117.9 Interval Suggested UCL to Use	144				nara ahhea		VIGORELLIINIE D	nou ibuuUii al i	, /o Olgi ill	iicalice L	.5 7 5 1				
147 95% CLT UCL 115.9 95% Jackknife UCL 117.9 148 95% Standard Bootstrap UCL 115 95% Bootstrap-t UCL 119 149 95% Hall's Bootstrap UCL 116.4 95% Percentile Bootstrap UCL 114.2 150 95% BCA Bootstrap UCL 115.6 151 90% Chebyshev(Mean, Sd) UCL 131.8 95% Chebyshev(Mean, Sd) UCL 147.8 152 97.5% Chebyshev(Mean, Sd) UCL 169.9 99% Chebyshev(Mean, Sd) UCL 213.4 153 154 Suggested UCL to Use 155 95% Student's-t UCL 117.9	145					Nonnar	ametric Diet	ribution Free I	ICI e						
147 148 95% Standard Bootstrap UCL 115 95% Bootstrap-t UCL 119 149 95% Hall's Bootstrap UCL 116.4 95% Percentile Bootstrap UCL 114.2 150 95% BCA Bootstrap UCL 115.6 151 90% Chebyshev(Mean, Sd) UCL 131.8 95% Chebyshev(Mean, Sd) UCL 147.8 152 97.5% Chebyshev(Mean, Sd) UCL 169.9 99% Chebyshev(Mean, Sd) UCL 213.4 153 154 Suggested UCL to Use 155 95% Student's-t UCL 117.9	146				QF	•						Q5%	. Jackkr	nife LICI	117 9
149 95% Hall's Bootstrap UCL 116.4 95% Percentile Bootstrap UCL 114.2 150 95% BCA Bootstrap UCL 115.6 151 90% Chebyshev(Mean, Sd) UCL 131.8 95% Chebyshev(Mean, Sd) UCL 147.8 152 97.5% Chebyshev(Mean, Sd) UCL 169.9 99% Chebyshev(Mean, Sd) UCL 213.4 153 154 Suggested UCL to Use 155 95% Student's-t UCL 117.9				Q5%											
149 150 95% BCA Bootstrap UCL 115.6 151 90% Chebyshev(Mean, Sd) UCL 131.8 95% Chebyshev(Mean, Sd) UCL 147.8 152 97.5% Chebyshev(Mean, Sd) UCL 169.9 99% Chebyshev(Mean, Sd) UCL 213.4 153 154 Suggested UCL to Use 155 95% Student's-t UCL 117.9						·					95% 5				
151 90% Chebyshev(Mean, Sd) UCL 131.8 95% Chebyshev(Mean, Sd) UCL 147.8 152 97.5% Chebyshev(Mean, Sd) UCL 169.9 99% Chebyshev(Mean, Sd) UCL 213.4 153 154 Suggested UCL to Use 155 95% Student's-t UCL 117.9						·					JJ /0 I	5.5511116	. 200101	ap 00L	
151 97.5% Chebyshev(Mean, Sd) UCL 169.9 99% Chebyshev(Mean, Sd) UCL 213.4 153										Öı	5% Ch	ebyshev/	(Mean :	Sd) UCI	147.8
153 154 Suggested UCL to Use 155 95% Student's-t UCL 117.9					,								•	,	
Suggested UCL to Use 155 95% Student's-t UCL 117.9						, 50, 502	. 30.0			J.	3 .0 OIII	_~ , Oi 10 V ((.	Ju, JUL	
155 95% Student's-t UCL 117.9							Suggested	UCL to Use							
155					95% Stu										
156															
	156														

	Α	В	С	D	E	F	G	Н	- 1	J	K	L
157	l	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	rovided to he	lp the user to	select the r	nost appropri	iate 95% UC	L.
158			F	Recommenda	tions are ba	sed upon da	ta size, data	distribution,	and skewnes	SS.		
159		These recor	nmendations	s are based u	pon the resu	ılts of the sin	nulation studi	ies summariz	zed in Singh	, Maichle, an	d Lee (2006)).
160	Ho	wever, simul	ations result	s will not cov	er all Real V	orld data se	ts; for addition	onal insight th	ne user may	want to cons	ult a statistic	cian.
161												
162		Note: For I	highly negati	vely-skewed	data, confid	ence limits (e	e.g., Chen, Jo	ohnson, Logi	normal, and	Gamma) ma	y not be	
163		·	reliable. (Chen's and J	ohnson's me	thods provid	e adjustment	ts for positve	ly skewed d	ata sets.	·	
164												

	4	A B C	D E UCL Statis	F tics for Data	G H Sets with Non-Detects	I J K	L
District Statistical Options Policial S. 12/28/2018 7:18:34 PM Policial S. 12/28/2018 7:18:34 PM	1						
Date Time of Computation Product S. 1228/0018 7:18-24 PM		User Selected Options	s				
From File		·		18:34 PM			
Full Precision OFF		·			er Pit.xls		
Confidence Coefficient 55%							
Number of Bootstrap Operations 2000		Confidence Coefficient	95%				
		Number of Bootstrap Operations	2000				
11 12							
12		DRO					
Total Number of Observations 5.3 Number of Distinct Observations 4.2							
Total Number of Observations 53				General	Statistics		
14		Tota	al Number of Observations			Number of Distinct Observations	42
Number of Detects						Number of Missing Observations	70
Number of Distinct Detects 37			Number of Detects	44		=	9
17		N	Number of Distinct Detects	37		Number of Distinct Non-Detects	7
19							-
16							
19							
Median Detects 4.1 CV Detects 6.566							
Skewness Detects 6.633							
23 Mean of Logged Detects 1.968 SD of Logged Detects 1.671							
Normal GOF Test on Detects Only							
Normal GOF Test on Detects Only			Wealt of Logged Detects	1.500		3D of Logged Detects	1.071
26 Shapiro Wilk Test Statistic			Norm	nal GOF Tes	t on Detects Only		
27 5% Shapiro Wilk Critical Value 0.944 Detected Data Not Normal at 5% Significance Level		9				Shaniro Wilk GOF Test	
28 Lilliefors Test Statistic 29 5% Lilliefors Critical Value 30 10 10 132 Detected Data Not Normal at 5% Significance Level 30 10 10 10 10 10 10 10 10 10 10 10 10 10					Detected Da		.1
29 5% Lilliefors Critical Value 0.132 Detected Data Not Normal at 5% Significance Level		570 €	•		Detected Da	_	,1
Detected Data Not Normal at 5% Significance Level		ı			Detected Da		1
Solid						_	''
Section Sect			20100104 2411			<u>-</u>	
Section Sect		Kaplan-	-Meier (KM) Statistics usin	a Normal Cr	itical Values and other N	Ionparametric UCLs	
Sas	· · · · · · · · · · · · · · · · · · ·					888 4	
Section Sect							
35						,	
37 90% KM Chebyshev UCL 3561 95% KM Chebyshev UCL 4768						, , , , , , , , , , , , , , , , , , , ,	
97.5% KM Chebyshev UCL 6444 99% KM Chebyshev UCL 9735			* *			·	
39 40 Gamma GOF Tests on Detected Observations Only 41 A-D Test Statistic 13.89 Anderson-Darling GOF Test 42 5% A-D Critical Value 0.956 Detected Data Not Gamma Distributed at 5% Significance Level 43 K-S Test Statistic 0.458 Kolmogorov-Smirnov GOF 44 5% K-S Critical Value 0.151 Detected Data Not Gamma Distributed at 5% Significance Level 45 Detected Data Not Gamma Distributed at 5% Significance Level 46 47 Gamma Statistics on Detected Data Only 48 k hat (MLE) 0.153 k star (bias corrected MLE) 0.158 49 Theta hat (MLE) 7060 Theta star (bias corrected MLE) 6848 50 Mean (detects) 1079			•			•	
40 Gamma GOF Tests on Detected Observations Only 41 A-D Test Statistic 13.89 Anderson-Darling GOF Test 42 5% A-D Critical Value 0.956 Detected Data Not Gamma Distributed at 5% Significance Level 43 K-S Test Statistic 0.458 Kolmogorov-Smirnov GOF 44 5% K-S Critical Value 0.151 Detected Data Not Gamma Distributed at 5% Significance Level 45 Detected Data Not Gamma Distributed at 5% Significance Level 46 Gamma Statistics on Detected Data Only 48 k hat (MLE) 0.153 k star (bias corrected MLE) 0.158 49 Theta hat (MLE) 7060 Theta star (bias corrected MLE) 6848 50 nu hat (MLE) 13.45 nu star (bias corrected) 13.86 51 Mean (detects) 1079 The star (bias corrected)			2 555,557 60E			33.3. an Shobyonov GOL	
A-D Test Statistic 13.89 Anderson-Darling GOF Test 42 5% A-D Critical Value 0.956 Detected Data Not Gamma Distributed at 5% Significance Level 43 K-S Test Statistic 0.458 Kolmogorov-Smirnov GOF 44 5% K-S Critical Value 0.151 Detected Data Not Gamma Distributed at 5% Significance Level 45 Detected Data Not Gamma Distributed at 5% Significance Level 46 47 Gamma Statistics on Detected Data Only 48 k hat (MLE) 0.153 k star (bias corrected MLE) 0.158 49 Theta hat (MLE) 7060 Theta star (bias corrected MLE) 6848 50 nu hat (MLE) 13.45 nu star (bias corrected) 13.86 Mean (detects) 1079			Gamma GOF	Tests on De	tected Observations On	lv	
42 5% A-D Critical Value 0.956 Detected Data Not Gamma Distributed at 5% Significance Level 43 K-S Test Statistic 0.458 Kolmogorov-Smirnov GOF 44 Detected Data Not Gamma Distributed at 5% Significance Level 45 Detected Data Not Gamma Distributed at 5% Significance Level 46 Gamma Statistics on Detected Data Only 48 k hat (MLE) 0.153 k star (bias corrected MLE) 0.158 49 Theta hat (MLE) 7060 Theta star (bias corrected MLE) 6848 50 Mean (detects) 1079						•	
43 K-S Test Statistic 0.458 Kolmogorov-Smirnov GOF 44 5% K-S Critical Value 0.151 Detected Data Not Gamma Distributed at 5% Significance Level 45 Detected Data Not Gamma Distributed at 5% Significance Level 46 47 Gamma Statistics on Detected Data Only 48 k hat (MLE) 0.153 k star (bias corrected MLE) 0.158 49 Theta hat (MLE) 7060 Theta star (bias corrected MLE) 6848 50 Mean (detects) 1079						<u> </u>	e l evel
44 5% K-S Critical Value 0.151 Detected Data Not Gamma Distributed at 5% Significance Level 45 Detected Data Not Gamma Distributed at 5% Significance Level 46 47 Gamma Statistics on Detected Data Only 48 k hat (MLE) 0.153 k star (bias corrected MLE) 0.158 49 Theta hat (MLE) 7060 Theta star (bias corrected MLE) 6848 50 nu hat (MLE) 13.45 nu star (bias corrected) 13.86 51 Mean (detects) 1079						<u> </u>	20101
Detected Data Not Gamma Distributed at 5% Significance Level							e l evel
45 Gamma Statistics on Detected Data Only 48 k hat (MLE) 0.153 k star (bias corrected MLE) 0.158 49 Theta hat (MLE) 7060 Theta star (bias corrected MLE) 6848 50 nu hat (MLE) 13.45 nu star (bias corrected) 13.86 51 Mean (detects) 1079						•	2 20.01
Gamma Statistics on Detected Data Only 48 k hat (MLE) 0.153 k star (bias corrected MLE) 0.158 49 Theta hat (MLE) 7060 Theta star (bias corrected MLE) 6848 50 nu hat (MLE) 13.45 nu star (bias corrected) 13.86 51 Mean (detects) 1079 1079			20.00.00 20.0 1401				
48 k hat (MLE) 0.153 k star (bias corrected MLE) 0.158 49 Theta hat (MLE) 7060 Theta star (bias corrected MLE) 6848 50 nu hat (MLE) 13.45 nu star (bias corrected) 13.86 51 Mean (detects) 1079			Gamma	Statistics on	Detected Data Only		
49 Theta hat (MLE) 7060 Theta star (bias corrected MLE) 6848 50 nu hat (MLE) 13.45 nu star (bias corrected) 13.86 51 Mean (detects) 1079						k star (hias corrected MLE)	0 158
50 nu hat (MLE) 13.45 nu star (bias corrected) 13.86 51 Mean (detects) 1079						,	
51 Mean (detects) 1079						·	
51						nu star (blas correcteu)	13.00
52			wearr (detects)	10/3			
	52						

53	Α	В	С		D	E Gamma RC	S Statist		G sing Imputed	H Non-Dete	ects	1		J		K		L
54			GROS n	nay not	be used	when data	set has	> 50%	6 NDs with r	nany tied o	bserva	ations a	at multi	ple DL	S			
55		GROS ma	y not be us	sed whe	en kstar	of detects	is small s	such a	ıs <1.0, espe	ecially whe	n the s	ample	size is	small (e.g.,	<15-20))	
56				For suc	ch situat	ions, GRO	S method	d may	yield incorre	ect values	of UCL	s and E	3TVs					
57					-	This is espe	ecially tru	e whe	en the sampl	e size is sı	mall.							
58		For ga	mma distri	ibuted d	letected	data, BTV	and UC	Ls ma	ay be compu	ited using	gamma	a distrib	oution	on KM	estin	nates		
59						Minimu	m 0.0	1								Mea	n	895.7
60						Maximu	m 47000	0								Media	n	3.6
61						S	D 6455	,								C/	V	7.206
62						k hat (MLI	E) 0.	132				k	star (bias co	rrect	ed MLE	=)	0.137
63					The	eta hat (MLI	*)								ed MLE		6547
						nu hat (MLI	,						•			orrected		14.5
64			Adius	ted Lev		nificance (,	455						•			+	
65		ıqA	-		-	lue (14.50,		916			Adiu	ısted C	hi Sau	are Val	lue (14.50, £	3)	6.769
66		95% Gamma				,	•			95%						en n<50		1919
67)L (400		0, 1070				Garrini	a riajai		02 (400			-/	
68					E	etimates of	Gamma	Darar	neters using	KM Estim	atae							
69						Mean (KN			lictors doing	Tavi Esuili	atos				 ,	SD (KM	4) (6393
70					V	ariance (KN	1							SE d		ean (KN		888.4
71					v	k hat (KN	1	196						JL (star (KM		0.0311
72						nu hat (KI	,	082								-	-	3.298
73					+1	neta hat (KN	,							+la		star (KM star (KM		
74				000/		•	,					00	10/			•		
75						rcentile (KI	•									tile (KN	•	571.8
76				95% gar	mma pe	rcentile (KI	И) 3586)				99	% gar	nma pe	rcen	tile (KN	1) 2	2909
77																		
78							-		eier (KM) Sta	atistics						<u> </u>		
79		-				alue (3.30,		466				•				(3.30, β	1	0.44
80	95	5% Gamma Ap	proximate	· KM-UC	CL (use	when n>=5	0) 6344			95% Gan	nma Ad	djusted	KM-U	CL (use	e whe	en n<50	J) (5/19
81																		
82									etected Obs	ervations (
83						Test Statist		528	_			apiro W						
84			5%			Critical Valu		944	D	etected Da		•			gnitio	cance L	.eve	d
85						Test Statist		247	_			illiefors.						
86				5% Li		Critical Valu		132		etected Da		Logno	rmal a	t 5% Si	gnitio	cance L	_eve	:1
87					De	tected Dat	a Not Log	gnorm	al at 5% Sig	nificance L	Level							
88																		
89								stics L	Jsing Impute	d Non-Det	tects							
90						original Sca										og Scal		1.656
91						riginal Sca										og Scal		1.72
92		95% t l	UCL (assu			of ROS dat	1					95%				trap UC		2669
93						ootstrap UC							9	5% Bo	otstra	ap t UC	L 49	99899
94				959	% H-UC	L (Log RO	S) 49.	73										
95																		
96			Sta	atistics					ata and Ass	uming Log	norma	l Distrib	oution					
97						lean (logge		744								eo Mea		5.718
98						SD (logge	*	605				95%				KM-Log		3.084
99			KM Stan	ıdard Er		lean (logge	•	224								KM -Log	-	41.22
100					KM	SD (logge	d) 1.6	605				95%	Critic	al H Va	lue (KM-Log	J)	3.084
101	-	·	KM Stan	ıdard Er	ror of N	lean (logge	d) 0.2	224										
102																		
103				-			D	L/2 S	tatistics									
104			DL	/2 Norm	nal						DL	/2 Log-	Trans	formed				
_ · • · <u> </u>	-								1									

105	Α	В		С	D Mean in C	E Original Scale	F 896.3	G	Н		1	J Me	K ean in Log Scale	L 1.718
106					SD in C	Original Scale	6455					(SD in Log Scale	1.682
107				95% t l	UCL (Assum	es normality)	2381					9	5% H-Stat UCL	48.19
108				DL/2	is not a reco	mmended me	ethod, provid	ed for compa	arisons and	d histo	orical rea	asons		
109														
110						Nonparame	etric Distribut	ion Free UC	L Statistics	S				
111					Data do n	ot follow a Di	scernible Dis	stribution at 5	3% Signific	cance	Level			
112														
113							Suggested	UCL to Use						
114				95	5% KM (Che	byshev) UCL	4768							
115														
116		Note: Sugg	gestio						-				opriate 95% UCI	
117						ations are ba								
118						•							and Lee (2006).	
119		However, sin	nulatio	ons resul	ts will not co	ver all Real V	Vorld data se	ts; for addition	onal insigh	it the ι	ıser may	want to c	onsult a statistici	an.
120														
121	ORO													
122														
123							General	Statistics						
124				Total	Number of 0	Observations	52						ct Observations	38
125											Numbe		ng Observations	66
126						er of Detects							of Non-Detects	8
127				N		stinct Detects					Numb		nct Non-Detects	4
128						imum Detect							num Non-Detect	13
129						imum Detect							num Non-Detect	50
130						ance Detects						Perce	ent Non-Detects	15.38%
131						Mean Detects							SD Detects CV Detects	85.4
132						edian Detects						1.		2.701
133						ness Detects gged Detects							Kurtosis Detects Logged Detects	25.73 1.492
134					iviean or Log	gged Detects	1.921					30 01	Logged Detects	1.492
135						Norn	nal GOF Tes	t on Detects	Only					
136				9	Shaniro Wilk	Test Statistic		l on Detects	Offiny	Qh	aniro W	ilk GOF Te	act	
137					· ·	Critical Value			Detected [•		Significance Leve	,1
138				0700		Test Statistic						GOF Test	•	·
139				5		Critical Value			Detected [Significance Leve	
140						Detected Data							g	·
141														
142				Kaplan-	Meier (KM) (Statistics usin	ng Normal Cr	itical Values	and other	Nonp	arametri	c UCLs		
143				•		KM Mean				•			d Error of Mean	10.99
144 145						KM SD							KM (BCA) UCL	49.6
145					95%	% KM (t) UCL				95	5% KM (I		Bootstrap) UCL	46.88
147						KM (z) UCL					•		Bootstrap t UCL	69.91
147				(ebyshev UCL							Chebyshev UCL	75.41
149				97	7.5% KM Che	ebyshev UCL	. 96.13						Chebyshev UCL	136.8
150								<u> </u>						
151					(Gamma GOF	Tests on De	tected Obse	rvations O	nly				
152					A-D	Test Statistic	5.758			Ande	rson-Da	rling GOF	Test	
153					5% A-D (Critical Value	0.831	Detect	ed Data N	lot Ga	mma Dis	stributed a	t 5% Significance	e Level
154					K-S	Test Statistic	0.31			Koln	nogorov-	-Smirnov (GOF	
155					5% K-S (Critical Value	0.142	Detect	ed Data N	lot Ga	mma Dis	stributed a	t 5% Significance	e Level
156					Detect	ed Data Not 0	Jamma Distr	ibuted at 5%	Significar	nce Le	vel			
.00														

	Α	В		С		D		E		F	G		Н		ı			J		K	\Box	L
157								Camm	na S	Statistics on	Detect	ad Data	Only									
158							k l	hat (ML		0.425	Detecti	o Dak	Olliy			k et	ar (h	ias co	rrect	ed ML	ΕV	0.411
159						Th		hat (ML		74.38					The		•			ed ML	1	76.88
160								hat (ML		37.41							`			orrecte		36.19
161						N		(detect	-	31.62								itai (bi				
162							vicuii	(dotoot	.5,	01.02												
163							Gar	nma RC	s s	Statistics us	sina Imp	uted N	on-Det	ects								
164			GR	OS ma	y not b					et has > 50%	• •				vations	s at m	nultir	ole DL	s			
165		GROS ma			-					mall such a			•							<15-2	20)	
166										nethod may												
167										ally true whe	•											
168		For ga	amma	distribu	uted de					nd UCLs ma					na dist	ributi	ion o	n KM	estin	nates		
169 170								Minimu		0.01	ĺ									Mea	an	27.4
171							l	Maximu	m	520										Media	an	3.45
172								S	D	79.16											CV	2.889
173							k l	hat (ML	E)	0.319						k sta	ar (b	ias co	rrect	ed ML	E)	0.313
174						Th		hat (ML	-	85.94					The		•			ed ML	1	87.46
175							nu l	hat (ML	E)	33.16							nu s	tar (bi	ias co	orrecte	ed)	32.58
176				Adjuste	d Leve	el of S	ignifi	icance (β)	0.0454											+	
177		Ap	proxir	nate Cl	hi Squ	are Va	alue	(32.58,	α)	20.53				Ad	justed	Chi S	Squa	are Va	lue (3	32.58,	β)	20.26
178		95% Gamm	па Арр	oroxima	te UC	L (use	e whe	en n>=5	0)	43.47			95%	Gamr	na Ad	juste	d UC	CL (us	e whe	en n<5	50)	44.06
179																						
180						E	Estim	nates of	Ga	mma Parar	neters u	sing K	M Estir	nates								
181							М	lean (KI	M)	27.51									,	SD (KI	M)	78.29
182						\	Varia	nce (KI	M)	6129								SE	of Me	ean (Kl	M)	10.99
183							k	hat (KI	M)	0.123									k s	tar (KI	M)	0.129
184							nu	hat (KI	M)	12.84									nu s	tar (Kl	M)	13.44
185						1	theta	hat (KI	M)	222.8								th	eta s	tar (Kl	M)	213
186				80	% gan	nma p	erce	ntile (Kl	M)	26.12					!	90%	gam	ma pe	ercen	tile (Kl	M)	79.4
187				95	% gan	nma p	erce	ntile (Kľ	M)	155.4					9	99%	gam	ma pe	ercen	tile (Kl	M)	383.2
188																						
189								Gan	nma	a Kaplan-M	eier (KM) Statis	stics									
190		Ар	proxir	mate Cl	hi Squ	are Va	alue	(13.44,	α)	6.187				Ad	justed	Chi S	Squa	are Va	lue (13.44,	β)	6.046
191	95	% Gamma Ap	pproxi	mate K	M-UC	L (use	e whe	en n>=5	0)	59.75		9	5% Ga	mma A	Adjuste	ed KN	M-UC	CL (us	e whe	en n<5	50)	61.14
192																						
193										Test on De	etected	Observ	ations									
194					-			st Statist		0.816					hapiro							
195				5% 5				ical Valu		0.944		Dete	ected D		_				ignific	cance	Lev	el
196								st Statist		0.241					Lilliefo							
197					5% Lill			ical Valu		0.132			ected D		ot Logr	norma	al at	5% S	ignific	cance	Lev	el
198						D	etec	ted Dat	a N	ot Lognorm	al at 5%	Signif	icance	Level								
199									~~	04-21-21	1-1											
200										Statistics U	using Im	puted l	Non-De	etects				N 4	. 1 1			4.057
201								inal Sca		27.58										og Sca		1.857
202		050/ •	1101	/oss:···				inal Sca		79.01					05	50/ P	or			og Sca		1.398
203		95% t	UCL (assum				ROS dat	1	45.94					95	ο‰ P€				rap U(48.39
204								strap UC		56.14							95	>% B0	otstra	ap t U(JL	74.86
205					95%	∘ ⊓-U	∪L (I	Log RO	၁)	29.41												
206				Ctor	ietics :	iejsa l	KM ~	etimete	e e-	n I ogged D	ate esd	Λεο::	ning ! c	anorm	al Diat	rih: ·*!	ion					
207				Stati	เอนปริ โ			stimate n (logge		n Logged D	ald dila	~ssul1	mig LO	gnorm	aı DIST	แเมนไ	IUII	ıν	M C	eo Mea	ar	6 170
208						r\IVI I	iviear	ı (ıogge	u)	1.821								r	uvi Ge	PO IVIE	all	6.178

209	Α		В	С	;	D KI	E M SD (logged	F) 1.402	G	Н	95	J 5% Critical	K H Value (KM		L 2.795
210				KM St	andar	d Error of	Mean (logged	0.201				95%	H-UCL (KM -	-Log)	28.59
211						KI	M SD (logged) 1.402			95	% Critical	H Value (KM-	-Log)	2.795
212				KM St	andard	d Error of	Mean (logged	0.201							
213									•						
214								DL/2 S	tatistics						
215					DL/2 N	ormal					DL/2 Lo	g-Transfor	med		
216						Mean in	Original Scale	e 29.21				N	Mean in Log S		2.021
217						SD in	Original Scale	e 78.7					SD in Log S	Scale	1.414
218				95	5% t U	CL (Assur	mes normality) 47.49					95% H-Stat	UCL	35.78
219					DL/2 is	not a rec	ommended m	ethod, provid	led for compa	arisons and	historical	reasons		<u> </u>	
220															
221							•	etric Distribut							
222						Data do	not follow a D	iscernible Di	stribution at §	5% Significa	nce Level				
223															
224									UCL to Use						
225					959	% KM (Ch	ebyshev) UCI	75.41							
226															
227		No	te: Sugge	estions re			ection of a 95			•			propriate 959	% UCL.	
228							dations are ba	·							
229							d upon the res						•		
230		Howe	ever, simu	ulations i	results	will not c	over all Real \	Norld data se	ets; for addition	onal insight	the user m	nay want to	consult a sta	atisticia	ın.
231															
232	PCP														
233															
234								1	Statistics						
235					Total N	Number of	f Observation:	s 108					tinct Observa		37
236											Num		sing Observa		19
237							ber of Detect						er of Non-De		82
238					Nu		istinct Detects				Nur		stinct Non-De		14
239							inimum Detec						imum Non-D		0.02
240							ximum Detec						imum Non-D		4.7
241							riance Detects					Pei	cent Non-De		75.93%
242							Mean Detects						SD De		45.5
243							ledian Detects						CV De		2.118
244							wness Detects						Kurtosis De		4.755
245					ľ	viean of L	ogged Detect	s 1.181				SD	of Logged De	ects	2.217
246							8.1		t an Data at	Omb-					
247					0.	onire Mari		mal GOF Tes	on Detects	Only	Ohar: !::	VACUE COE	Toot		
248				-		•	Critical Value			Dotooto d D	•	Wilk GOF		o Loviel	
249					o‰ Sn	•	Critical Value			Defected Da			Significance	= Level	
250					EO		Test Statistic			Dotooto d D		ors GOF Te		o Loviel	
251					5%	o LIIIIETOIS	Critical Value					niiiai at 5%	Significance	= Level	
252							Detected Da	a inut inorma	ı aı ə% SigNi	ncance Lev	ei -				
253				IZ.	nlo- "	loio= ///*	Ctatiaties'	na Names I O	itioal \/al···a	and ather t	longer	otrio LICI -			
254				Ka	hiau-M	ieler (KM)	Statistics usi KM Mear		nucai vaiues	and other N	vonparame		lard Error of N	Moon	2.328
255															
256						0.5	KM SE				0E0/ I/N		% KM (BCA)		10.06 9.526
257							5% KM (t) UCI				95% KN	`	le Bootstrap)		
258					0/		% KM (z) UCI						M Bootstrap t		11.52
259							nebyshev UCI						1 Chebyshev		15.44
260					97.	√ KIVI CI	nebyshev UCI	19.83				99% KN	1 Chebyshev	UCL	28.45

261				-
262	Gamma GOF	Tests on Det	tected Observations Only	
263	A-D Test Statistic	1.244	Anderson-Darling GOF Test	
264	5% A-D Critical Value	0.84	Detected Data Not Gamma Distributed at 5% Significance Leve	el .
265	K-S Test Statistic	0.207	Kolmogorov-Smirnov GOF	
266	5% K-S Critical Value	0.185	Detected Data Not Gamma Distributed at 5% Significance Leve	el .
267	Detected Data Not G	amma Distri	ibuted at 5% Significance Level	
268				
269			Detected Data Only	
270	k hat (MLE)	0.356	k star (bias corrected MLE) 0.3	
271	Theta hat (MLE)	60.43	Theta star (bias corrected MLE) 63.	
272	nu hat (MLE)	18.49	nu star (bias corrected) 17.	69
273	Mean (detects)	21.49		
274				
275			ing Imputed Non-Detects	
276			NDs with many tied observations at multiple DLs	
277	-		s <1.0, especially when the sample size is small (e.g., <15-20)	
278			yield incorrect values of UCLs and BTVs	
279	·	•	n the sample size is small.	
280			y be computed using gamma distribution on KM estimates	
281	Minimum	0.01		196
282	Maximum	150	Median 0.0	
283	SD	23.85		589
284	k hat (MLE)	0.158	k star (bias corrected MLE) 0.1	
285	Theta hat (MLE)	32.8	Theta star (bias corrected MLE) 32.	
286	nu hat (MLE)	34.22	nu star (bias corrected) 34.	61
287	Adjusted Level of Significance (β)	0.0478	A.II	0.1
288	Approximate Chi Square Value (34.61, α)	22.15	Adjusted Chi Square Value (34.61, β) 22.	
289	95% Gamma Approximate UCL (use when n>=50)	8.119	95% Gamma Adjusted UCL (use when n<50) 8.1	168
290	Fallmake of O	mme Dana	notors using KM Estimates	
291			neters using KM Estimates	72
292	Mean (KM)	5.289	SD (KM) 23.	
293	Variance (KM)	562.5	```	328 545
294	k hat (KM)	0.0497		545
295	nu hat (KM) theta hat (KM)	10.74 106.3	nu star (KM) 11.	70
296	tneta nat (KM) 80% gamma percentile (KM)	0.959		978
297	95% gamma percentile (KM)	28.93	90% gamma percentile (KM) 8.8	
298	35 % gariina percentile (KM)	۷٥.۶٥	99 % gamma percentile (KMI)	'
299	Comm	a Kanlan Ma	eier (KM) Statistics	
300	Approximate Chi Square Value (11.78, α)	5.08		021
301	95% Gamma Approximate KM-UCL (use when n>=50)	12.26	95% Gamma Adjusted KM-UCL (use when n<50) 12.	
302	35 /0 Gamma Approximate Rivi-OCL (use when tiz=50)	14.40	95 /0 Gaillilla Aujusteu Nivi-OCL (use Wileli II-50) 12.	71
303	Lognormal CO	F Test on Da	etected Observations Only	
304	Shapiro Wilk Test Statistic	0.967	Shapiro Wilk GOF Test	
305	5% Shapiro Wilk Critical Value	0.907	Detected Data appear Lognormal at 5% Significance Level	
306	Lilliefors Test Statistic	0.92	Lilliefors GOF Test	
307	5% Lilliefors Critical Value	0.112	Detected Data appear Lognormal at 5% Significance Level	
308		-	mal at 5% Significance Level	
309	Detected Data ap	podi Lugiluli	mai at 0 /0 Olymnoance Level	
310	I canormal DOS	Statistice II	Ising Imputed Non-Detects	
311	Mean in Original Scale	5.268	Mean in Log Scale -2.8	7
312	wearr in Original Scale	J.200	-2.0	.,

	Α		В	С		D	E	F	G	Н	I	J	K	L
313							riginal Scale	23.83					in Log Scale	3.29
314			95% t L	JCL (assum		-	of ROS data)				95%		ootstrap UCL	8.983
315							otstrap UCL	10.43				95% Bo	otstrap t UCL	11.29
316					95	% H-UC	L (Log ROS)	62.02						
317														
318				Stat	tistics	-	VI estimates of		ata and Assı	ıming Logno	ormal Distrib			
319							ean (logged)						M Geo Mean	0.134
320							SD (logged)	2.383			95%		lue (KM-Log)	3.79
321				KM Stand	lard E		ean (logged)						CL (KM -Log)	5.497
322							SD (logged)	2.383			95%	Critical H Va	lue (KM-Log)	3.79
323				KM Stand	lard E	rror of M	ean (logged)	0.32						
324														
325								DL/2 S	tatistics					
326				DL/2	2 Norr						DL/2 Log-	Transformed		
327					M	lean in O	riginal Scale						in Log Scale	-0.312
328							riginal Scale						in Log Scale	1.719
329						•	es normality)						6 H-Stat UCL	5.254
330				DL/2	2 is no	ot a recor	nmended me	ethod, provid	ed for compa	arisons and	historical rea	isons		
331														
332									ion Free UC					
333					D	etected [Data appear l	Lognormal D	istributed at	5% Significa	ance Level			
334														
335								Suggested	UCL to Use					
336							KM H-UCL	5.497						
337														
338		Note:	Sugge	stions rega				· .		•			riate 95% UCL	
339							ations are ba	•						
340							•				•		nd Lee (2006).	
341	F	Howeve	er, simul	lations resu	ults w	ill not cov	er all Real W	Vorld data se	ts; for addition	onal insight	the user may	want to con	sult a statistici	an.
342														

1	A B C	D E UCL Statis	F tics for Data	G H Sets with Non-Detects	I	J K	L
1							
2	User Selected Options	s					
3	Date/Time of Computation	ProUCL 5.12/28/2018 7:	37:30 PM				
4	From File	5034.01 Organics, Dip T		er Pit 0-2'.xls			
5	Full Precision	OFF					
6	Confidence Coefficient	95%					
7	Number of Bootstrap Operations	2000					
8	Trainibol of Booleanap operations	2000					
9	DRO						
10							
11			General	Statistics			
12	Tota	Il Number of Observations	32	Jausucs	Number o	f Distinct Observations	28
13	Tota	ii Number of Observations	32			f Missing Observations	5
14		Number of Detects	27			lumber of Non-Detects	5
15		Number of Detects Jumber of Distinct Detects					_
16	N				Number (of Distinct Non-Detects	5
17		Minimum Detect				Minimum Non-Detect	1
18		Maximum Detect				Maximum Non-Detect	35
19		Variance Detects				Percent Non-Detects	15.63%
20		Mean Detects				SD Detects	9042
21		Median Detects				CV Detects	5.151
22		Skewness Detects	5.196			Kurtosis Detects	27
23		Mean of Logged Detects	2.363			SD of Logged Detects	2.008
24							
25		Norm	nal GOF Test	on Detects Only			
26	5	Shapiro Wilk Test Statistic	0.199		Shapiro Wilk (GOF Test	
27	5% S	Shapiro Wilk Critical Value	0.923	Detected D	ata Not Normal a	at 5% Significance Leve	1
28		Lilliefors Test Statistic	0.537		Lilliefors GO	OF Test	
29	Ę	5% Lilliefors Critical Value	0.167	Detected D	ata Not Normal a	at 5% Significance Leve	·I
30		Detected Data	Not Norma	at 5% Significance Lev	vel		
31							
32	Kaplan-	-Meier (KM) Statistics usin	g Normal Cr	tical Values and other I	Nonparametric U	CLs	
33		KM Mean	1482		KM S	Standard Error of Mean	1473
34		KM SD	8175			95% KM (BCA) UCL	4420
35		95% KM (t) UCL	3979		95% KM (Per	centile Bootstrap) UCL	4418
36		95% KM (z) UCL	3904		95	% KM Bootstrap t UCL	826128
37		90% KM Chebyshev UCL	5900			% KM Chebyshev UCL	
38	97	7.5% KM Chebyshev UCL	10679		999	% KM Chebyshev UCL	16135
39		<u> </u>				-	
40		Gamma GOF	Tests on De	tected Observations Or	nly		
		A-D Test Statistic			Anderson-Darlin	g GOF Test	
41		5% A-D Critical Value				outed at 5% Significance	Level
42		K-S Test Statistic			Kolmogorov-Sn		
43		5% K-S Critical Value		Detected Data No		outed at 5% Significance	e Level
44				ibuted at 5% Significan			
45					· = = · - ·		
46		Gamma	Statistics on	Detected Data Only			
47		k hat (MLE)			k eta	r (bias corrected MLE)	0.158
48		Theta hat (MLE)				r (bias corrected MLE)	
49		nu hat (MLE)				nu star (bias corrected)	8.553
50		Mean (detects)			·	ia siai (bias corrected)	0.555
51		iviean (detects)	1700				
52							

CROS may not be used when data set has > 50% ND a with many field observations at multiple DLs	53	A B C D E Gamma ROS	F Statistics us	G H I J K Sing Imputed Non-Detects	L
GRIOS may not be used when kistar of detects is small such as < 10, especially when the sample size is small (e.g. <15-20)		GROS may not be used when data s	et has > 50%	% NDs with many tied observations at multiple DLs	
For such situations, GROS method may yield incorrect values of UCLs and BTVs		GROS may not be used when kstar of detects is	small such a	as <1.0, especially when the sample size is small (e.g., <15-20)	
This is expocally true when the sample size is small.		For such situations, GROS	method may	yield incorrect values of UCLs and BTVs	
For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates 148 189 18		This is especi	ally true whe	en the sample size is small.	
Minimum Monimum Monimum Monimum Manimum Man		For gamma distributed detected data, BTVs a	and UCLs ma	ay be computed using gamma distribution on KM estimates	
Modelman 47,000 Median 45		Minimum	0.01	Mean	1481
Section Sec		Maximum	47000	Median	4.5
The table The table The table The table The table		SD	8306	CV	5.608
Theta hat (MLE) 1382	62	k hat (MLE)	0.13	k star (bias corrected MLE)	0.139
Adjusted Level of Significance (β) 0.0416 Approximate Chi Square Value (8.88, c) 3.025 Adjusted Chi Square Value (8.88, c) 3.075 95% Gamma Approximate UCL (use when n≈50) 4278 95% Gamma Approximate UCL (use when n≈50) 4279 95% Gamma Approximate UCL (use when n≈50) 4279 95% Gamma Approximate UCL (use when n≈50) 4279 95% Gamma Approximate UCL (use when n≈50) 45% Gamma App	63	Theta hat (MLE)	11382	,	10674
Approximate Chi Square Value (8.88, o) 3.255 Adjusted Chi Square Value (8.88, p) 3.075	64	nu hat (MLE)	8.328	nu star (bias corrected)	8.881
	65				
Section Sect	66				3.075
Best	67	95% Gamma Approximate UCL (use when n>=50)	4041	95% Gamma Adjusted UCL (use when n<50)	4278
Mean (KM) 1482 SD (KM) 8175	68				
	69			-	
Reserve	70	* *		, ,	
1	71				
Table Tabl	72				
75 80% gamma percentile (KM) 209.5 90% gamma percentile (KM) 2297 76 95% gamma percentile (KM) 7914 99% gamma percentile (KM) 32077 77	73				
76	74	, ,			
No. Company Compan	75				
Rapproximate Chi Square Value (3.24, o) 0.446 Adjusted Chi Square Value (3.24, β) 0.399	76	95% gamma percentile (KM)	7914	99% gamma percentile (KM)	32077
Approximate Chi Square Value (3.24, α) 0.446 Adjusted Chi Square Value (3.24, β) 0.399	77				
10749 95% Gamma Adjusted KM-UCL (use when n>50) 10749	78		-		
Section Sec	79				
Signature Sig	80				12018
Shapiro Wilk Test Statistic 0.674 Shapiro Wilk GOF Test	81	95% Gamma Adjust	ted KM-UCL	(use when k<=1 and 15 < n < 50)	
84 Shapiro Wilk Critical Value 0.674 Shapiro Wilk GOF Test 85 5% Shapiro Wilk Critical Value 0.923 Detected Data Not Lognormal at 5% Significance Level 86 Lilliefors Test Statistic 0.242 Lilliefors GOF Test 87 5% Lilliefors Critical Value 0.167 Detected Data Not Lognormal at 5% Significance Level 88 Lognormal ROS Statistics Using Imputed Non-Detects 90 Lognormal ROS Statistics Using Imputed Non-Detects 91 Mean in Original Scale Para Not Lognormal at 5% Significance Level 92 Spin Original Scale Para Not Lognormal ROS Statistics Using Imputed Non-Detects 93 95% t UCL (assumes normality of ROS data) Para Not Lognormal Para Not Logno	82				
Section Sec	83			•	
86 Lilliefors Test Statistic 0.242 Lilliefors GOF Test 87 5% Lilliefors Critical Value 0.167 Detected Data Not Lognormal at 5% Significance Level 88 Detected Data Not Lognormal at 5% Significance Level 99 Lognormal ROS Statistics Using Imputed Non-Detects 91 Mean in Original Scale Spin Conginal Scale Spin Log Spin Log Scale Spin Log Scale Spin Log Scale Spin Log Scale Spin Log Spin Log Spin Log Scale Spin Log S		•		-	
Section Sect		•			/ei
Second					
Section Sect					/ei
Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution Statistics Using Imputed Non-Detects Statistics		Detected Data i	NOT LOGHOTH	lai at 5% Significance Level	
Mean in Original Scale 1481 Mean in Log Scale 2.037		Lognormal PO	S Statistics I	leing Imputed Non Dataste	
SD in Original Scale 8306 SD in Log Scale 2.048		-			2 037
93 95% t UCL (assumes normality of ROS data) 3971 95% Percentile Bootstrap UCL 4418 94 95% BCA Bootstrap UCL 5890 95% Bootstrap t UCL 831850 95 95% H-UCL (Log ROS) 263 96 97 Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution 98 KM Geo Mean 8.406 99 KM SD (logged) 1.909 95% Critical H Value (KM-Log) 3.692 100 KM Standard Error of Mean (logged) 0.346 95% H-UCL (KM -Log) 184.5 101 KM Standard Error of Mean (logged) 0.346 102 KM Standard Error of Mean (logged) 0.346					
94 95% BCA Bootstrap UCL 5890 95% Bootstrap t UCL 831850 95 95% H-UCL (Log ROS) 263 96 97 Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution 98 KM Mean (logged) 2.129 KM Geo Mean 8.406 99 KM SD (logged) 1.909 95% Critical H Value (KM-Log) 3.692 100 KM Standard Error of Mean (logged) 0.346 95% H-UCL (KM -Log) 184.5 101 KM Standard Error of Mean (logged) 0.346 102 KM Standard Error of Mean (logged) 0.346		_			
95 95% H-UCL (Log ROS) 263 96 97 Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution 98 KM Mean (logged) 2.129 KM Geo Mean 8.406 99 KM SD (logged) 1.909 95% Critical H Value (KM-Log) 3.692 100 KM Standard Error of Mean (logged) 0.346 95% H-UCL (KM -Log) 184.5 101 KM Standard Error of Mean (logged) 0.346 95% Critical H Value (KM-Log) 3.692 102 KM Standard Error of Mean (logged) 0.346		,			
96 97		·		95 % Bootstrap t OCL	001000
97 Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution 98 KM Mean (logged) 2.129 KM Geo Mean 8.406 99 KM SD (logged) 1.909 95% Critical H Value (KM-Log) 3.692 100 KM Standard Error of Mean (logged) 0.346 95% H-UCL (KM -Log) 184.5 101 KM SD (logged) 1.909 95% Critical H Value (KM-Log) 3.692 102 KM Standard Error of Mean (logged) 0.346		33 % TI-00L (L09 NOS)	200		
98 KM Mean (logged) 2.129 KM Geo Mean 8.406 99 KM SD (logged) 1.909 95% Critical H Value (KM-Log) 3.692 100 KM Standard Error of Mean (logged) 0.346 95% H-UCL (KM -Log) 184.5 101 KM Standard Error of Mean (logged) 1.909 95% Critical H Value (KM-Log) 3.692 102 KM Standard Error of Mean (logged) 0.346		Statistics using KM actimates	on I oaged D	ata and Assuming Lognormal Dietribution	
99 KM SD (logged) 1.909 95% Critical H Value (KM-Log) 3.692 100 KM Standard Error of Mean (logged) 0.346 95% H-UCL (KM -Log) 184.5 101 KM SD (logged) 1.909 95% Critical H Value (KM-Log) 3.692 102 KM Standard Error of Mean (logged) 0.346 103 PM C Statistics		-			8 406
100 KM Standard Error of Mean (logged) 0.346 95% H-UCL (KM -Log) 184.5 101 KM SD (logged) 1.909 95% Critical H Value (KM-Log) 3.692 102 KM Standard Error of Mean (logged) 0.346		1 77 1			
101 KM SD (logged) 1.909 95% Critical H Value (KM-Log) 3.692 102 KM Standard Error of Mean (logged) 0.346 103					
102 KM Standard Error of Mean (logged) 0.346				, ,	
103 DI /2 Statistica				55 % Chilical IT Value (NW-LOG)	0.002
DI /O Chabination		New Standard Error or Mean (rogged)	0.040		
104			פ כיו וח	tatistics	
	104				

105	Α	В		C DL/2	Normal	E	F	G	Н	DL/2 Log-	J Fransformed	K	L
106					Mean in	Original Scale	1482				Mean	in Log Scale	2.141
107					SD in	Original Scale	8306				SD	in Log Scale	1.97
108				95% t	UCL (Assur	mes normality)	3972				95%	6 H-Stat UCL	226.3
109				DL/2	is not a rec	ommended me	thod, provid	ed for compar	isons and I	nistorical rea	isons		
110													
111						Nonparame	etric Distribut	ion Free UCL	Statistics				
112					Data do	not follow a Di	scernible Dis	stribution at 59	6 Significa	nce Level			
113													
114							Suggested	UCL to Use					
115				97.	5% KM (Ch	ebyshev) UCL	10679						
116							II.	1					
117		Note: Su	ggesti	ons regar	ding the sel	ection of a 95%	% UCL are pr	ovided to help	the user to	select the	most approp	riate 95% UCI	L.
118					Recommen	dations are ba	sed upon da	ta size, data d	istribution,	and skewne	SS.		
119		These re	ecomr	nendation	ns are based	d upon the resu	ults of the sin	nulation studie	s summari	zed in Singh	n, Maichle, ar	nd Lee (2006)	
120	H	łowever, s	imulat	ions resu	Its will not co	over all Real V	Vorld data se	ts; for additior	nal insight t	he user may	want to con	sult a statistic	ian.
121													
122	ORO	·											
123													
124							General	Statistics					
125				Tota	I Number of	Observations	31					Observations	28
126										Numbe		Observations	2
127						ber of Detects						Non-Detects	4
128				N		istinct Detects				Numb		Non-Detects	3
129						inimum Detect	-					n Non-Detect	13
130						ximum Detect						n Non-Detect	50
131						riance Detects					Percent	Non-Detects	12.9%
132						Mean Detects	48.79					SD Detects	106.1
133						ledian Detects						CV Detects	2.174
134						vness Detects	3.707					tosis Detects	15.67
135					Mean of Lo	ogged Detects	2.427				SD of Lo	gged Detects	1.637
136													
137					01 : 14771			t on Detects C	only				
138						Test Statistic				•	ilk GOF Test		
139				5% 5	•	Critical Value		ט	etected Da		•	nificance Leve	
140						Test Statistic	0.328		ata ata d Da		GOF Test	-ifia-man I ava	.1
141				•	5% LIIIIETOIS	Critical Value	0.167				aı aı 5% SIĞI	nificance Leve	л
142						Detected Data	מוווטעו זטעו ב	at 5% Signiffe	Lance Leve	71			
143				Kanlan	Major (VAA)	Statistics usin	a Normal C	itical Values a	nd other N	onneromot-	a lici a		
144				rapian	-iAICICI (L/IAI)	KM Mean		iucai vaides a	na ouiei N	•		Error of Mean	17.98
145						KM SD	98.22			, N		M (BCA) UCL	75.99
146					05	KW SD 5% KM (t) UCL	73.81			95% KM /		otstrap) UCL	75.99
147						% KM (z) UCL	73.81			00 /0 IXIVI (I		otstrap t UCL	111.7
148						nebyshev UCL	97.24					ebyshev UCL	121.7
149						nebyshev UCL	155.6					ebyshev UCL	222.2
150					, .5 /0 IXIVI OI	Joby Siliev OOL	100.0				5570 KIVI OIR	Jayonev OCL	
151						Gamma GOF	Tests on De	tected Ohsen	rations Onl	.			
152					Δ_Γ	Test Statistic		COCCU ODSCIV		<u></u>	rling GOF Te	est	
153						Critical Value		Detecte				% Significanc	e Level
154						Test Statistic		Dottotte			Smirnov GO	_	
155						Critical Value		Detecte				% Significance	e Level
156					2,010	35ai vaido	3.170	2010010		Samila Die		J.g.iiiiouilo	

157	A B C D Detected Date	E ta Not G	F Samma Distr	G ibuted at 5%	H Significan	ce Level		J	K	L		
157 158												
	G	amma	Statistics on	Detected Da	ta Only							
159		(MLE)	0.443				k star	(bias co	rrected MLE	0.419		
160	Theta hat	` ′	110.1			Tł		•	rrected MLE			
161		(MLE)	23.93					•	as corrected			
162	Mean (d	` ′	48.79					,				
163 164		,										
165	Gamm	na ROS	Statistics us	sing Imputed I	Non-Detec	cts						
166	GROS may not be used wher	n data s	et has > 50%	6 NDs with m	any tied o	bservation	ns at mu	ıltiple DL:	S			
167	GROS may not be used when kstar of det	ects is	small such a	s <1.0, espec	cially wher	n the sam	ple size	is small (e.g., <15-20)		
168	For such situations,	GROS r	method may	yield incorred	ct values c	of UCLs a	nd BTVs	3				
169	This is	especi	ally true whe	en the sample	size is sn	nall.						
170	For gamma distributed detected data,	BTVs a	nd UCLs ma	ay be compute	ed using g	jamma dis	stribution	n on KM	estimates			
171	Mi	nimum	0.01						Mear	42.82		
172	Ma	ximum	520						Mediar	4.6		
173		SD	100						C/	2.335		
174	k hat	(MLE)	0.336				k star	(bias co	rrected MLE	0.325		
175	Theta hat	(MLE)	127.4			Th	neta star	(bias co	rrected MLE	131.8		
176	nu hat	(MLE)	20.83				n	u star (bi	as corrected	20.15		
177	Adjusted Level of Significa	nce (β)	0.0413									
178	Approximate Chi Square Value (20	0.15, α)	10.96			Adjuste	d Chi So	quare Va	lue (20.15, β	10.59		
179	95% Gamma Approximate UCL (use when	n>=50)	78.72		95% (Gamma A	djusted	UCL (use	e when n<50	81.52		
180				1						1		
181	Estimat	es of Ga	amma Parar	neters using l	KM Estima	ates						
182	Mea	n (KM)	43.28						SD (KM	98.22		
183	Variano	e (KM)	9647			of Mean (KM	17.98					
184	k ha	at (KM)	(KM) 9647 SE of Mean (KM) 1 (KM) 0.194 k star (KM) 0									
185	nu ha	at (KM)	12.04			12.21						
186	theta ha	at (KM)	222.9					th	eta star (KM	219.8		
187	80% gamma percenti	le (KM)	56.57				90% ga	amma pe	rcentile (KM	130.9		
188	95% gamma percenti	le (KM)	223.9				99% ga	amma pe	rcentile (KM	480.7		
189												
190		Gamm	a Kaplan-M	eier (KM) Stat	tistics							
191	Approximate Chi Square Value (12	,	5.365			•			lue (12.21, β			
192	95% Gamma Approximate KM-UCL (use when	n>=50)	98.5	!	95% Gam	ma Adjus	ted KM-	UCL (use	e when n<50) 103.3		
193												
194	-			etected Obse	rvations O	-						
195	Shapiro Wilk Test S		0.872					OF Test				
196	5% Shapiro Wilk Critica		0.923	De	tected Dat	1			gnificance L	evel		
197	Lilliefors Test S		0.22				fors GO					
198	5% Lilliefors Critica		0.167				gnormal	at 5% Si	gnificance L	evel		
199	Detected	d Data N	Not Lognorm	al at 5% Sign	ificance L	evel						
200				<u> </u>								
201				Jsing Imputed	Non-Dete	ects				2.339		
202	Mean in Original Scale 43.32 Mean in Log Scale											
203	SD in Origina		99.8						in Log Scale			
204	95% t UCL (assumes normality of RO	Í	73.74			9	5% Per		ootstrap UCI			
205	95% BCA Bootstra		91.72					95% Bo	otstrap t UCI	. 115.3		
206	95% H-UCL (Log	g KOS)	83.91									
207	<u> </u>		=									
208	Statistics using KM esti	mates c	n Logged D	ata and Assu	ming Logr	normal Dis	stributio	n				

1.552 1.55	209	Α		В	С	D k		E n (logged)	F 2.306	G	Н		I		J K	M Geo	K Mean	L 10.03
Main	210						KM SE	O (logged)	1.552				95%	Critica	al H Va	lue (KN	И-Log)	3.15
Maintain	211				KM Standa	ard Error	r of Mea	n (logged)						959	% H-U	CL (KM	1 -Log)	81.59
DL/2 Starbeicion DL/2 Starbeicion DL/2 Log-Trensformed DL/2	212												95%	Critica	al H Va	lue (KN	И-Log)	3.15
DL/2 Nome DL/2 Nome DL/2 Log-Transformed DL/2 Log-Transformed DL/2 Log-Transformed DL/2 Nome Mean in Original Scale 44.54 Mean in Log Scale 2.444 Mean in Log Scale 2.444 Mean in Log Scale 3.50 in Log Scale 1.544 Mean in Log Scale 3.54 Mean in Log Scale 3.55 Mean in Log Scale	213				KM Standa	ard Error	r of Mea	n (logged)	0.288									
DLZ Normal DLZ Log-Transformed SD in Log Scale DLZ Log-Transformed SD in Log Scale DLZ Log-Transformed SD in Log Scale DLZ Log-Transformed DLZ Log-Transformed SD in Log Scale DLZ Log-Transformed D	214																	
Mean in Original Scale	215								DL/2 S	tatistics								
Spin	216				DL/2			:I OI-	44.54			DL	/2 Log-	Iranst		in Lan	01-	0.444
19 95% t UCL (Assumes normality) 74.85 95% H-Stat UCL 91.83 220 DL2 is not a recommended method, provided for comparisons and historical reasons 221 Nonparametric Distribution Free UCL Statistics 222 Data do not follow a Discombible Distribution at 5% Significance Level 223 Suggestion regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 226 95% KM (Chebyshev) UCL 121.7 227 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 228 Recommendations are based upon data size, data distribution, and skewness. 230 These recommendations are based upon that size, data distribution, and skewness. 231 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. 232 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. 233 PCP 234 Ceneral Statistics 235 Ceneral Statistics 236 Total Number of Observations of 7 Number of Distinct Observations 1 Number of Distinct Detects 24 Number of Distinct Observations 1 Number of Distinct Detects 24 Number of Distinct Observations 1 Number of Distinct Detects 24 Number of Distinct Non-Detects 3 Number of Distinct Detects 22 Number of Distinct Non-Detects 43 Number of Distinct Detects 22 Number of Distinct Non-Detects 44 Nedian Detects 222.7 Percent Non-Detects 4.79 244 Median Detects 22.64 Supplementation of Detects 4.79 245 Shapiro Wilk Test Statistic 2.359 Kurrosis Detects 4.099 246 Mean of Logged Detects 1.285 Supplementation 1.285 Significance Level 2.369 247 Normal GOF Test on Detects Only Shapiro Wilk Coff Test 2.369 248 Shapiro Wilk Coff Statistics using Normal Critical Values and other Normal at 5% Significance Level 2.369 249 Shapiro Wilk Coff Statistics using Normal Critical Values and other Normal at 5% Significance Level 2.369 250 Shapiro Wilk Coff Statistics using Normal Critical Values and oth	217																	
DL2 is not a recommended method, provided for comparisons and historical reasons Data do not follow a Discernible Distribution Free UCL Statistics	218				0E9/ +1											_		
Data do not follow a Discemble Distribution Free UCL Statistics Data do not follow a Discemble Distribution at 5% Significance Level Suggested UCL to Use Recommendations are based upon data size. data distribution, and skewness. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon data size, data distribution, and skewness. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon data size, data distribution, and skewness. Recommendations are based upon data size, data distribution, and skewness. Recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistican. Recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistican. Recommendations are based upon data size, data distribution, and skewness. Recommendations are based upon data size, data distribution, and skewness. Recommendations are based upon data size, data distribution, and skewness. Recommendations are based upon data size, data distribution, and skewness. Recommendations are based upon data size, data distribution, and skewness. Recommendations are based upon data size, data distribution, and skewness. Recommendations are based upon data size, data distribution, and skewness. Recommendations are based upon data size, data distribution, and skewness. Recommendations are based upon data size, data distribution, and skewness. Recommendations are based upon data size, data distribution, and skewness. Recommendations are based upon data size, data distribution, and	219					,		• •		ed for comp	aricone and	d hieto	rical res	aeone	95%	о п-ота	at UCL	91.03
Data do not follow a Discernible Distribution Free UCL Statistics					002		16COIIII	ienaea m	eulou, provid	ed for comp		a 1113tO	iicai iec	a30113				
Data do not follow a Discemible Distribution at 5% Significance Level Suggested UCL to Use							N	onparame	etric Distribut	ion Free UC	L Statistics	•						
Suggested UCL to Use						Data		-					_evel					
Suggested UCL to Use																		
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL									Suggested	UCL to Use								
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Beneral Statistics General Statistics General Statistics Total Number of Distinct Observations of Number of Distinct Observations of Number of Missing Observations of Number of Missing Observations of Number of Distinct Observations of Number of Disti					95	5% KM	(Chebys	hev) UCL	. 121.7									
Note: Suggestions regarding the selection of a 95% UCL reprovided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skempts. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). Recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). Recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). Recommendations are based upon data size, data distribution, and skewners want to consult a statistician. Recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). Recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). Recommendations are statistic. Recommendations such as statistic. Recommendations are statistic. Recommendations are statistic. Recommendation studies summarized to the Normal at 5% Significance Level Lilliefors GOF Test Recommendation such as statistic. Recommendation are statistic. Recommendation are statistic. Recommendation are statistic. Recommendation at the such as statistic. Recommendation as statisti																		
Recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. Real World data sets; for additional insight the user may want to consult a statistician. Real World data sets; for additional insight the user may want to consult a statistician. Real World data sets; for additional insight the user may want to consult a statistician. Real World data sets; for additional insight the user may want to consult a statistician. Real World data sets; for additional insight the user may want to consult a statistician. Real World data sets; for additional insight the user may want to consult a statistician. Real World data sets; for additional insight the user may want to consult a statistician. Real World data sets; for additional insight the user may want to consult a statistician. Real World data sets; for additional insight the user may want to consult a statistician. Real World data sets; for additional insight the user may want to consult a statistician. Real World data sets; for additional insight the user may want to consult a statistician. Real World data sets; for additional insight the user may want to consult a statistician. Real World data sets; for additional insight the user may want to consult a statistician. Real World data sets; for additional insight the user may want to consult a statistician. Real World data sets; for additional insight the user may want to consult a statistician. Real World data sets; for additional insight the user may want to consult a statistic and a statistician and a sta			No	te: Sugge	stions regard	ding the	selectio	n of a 95°	% UCL are p	rovided to he	lp the user	to sel	ect the	most a	approp	riate 95	5% UCL	
These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.					F	Recomm	nendatio	ns are ba	sed upon da	ta size, data	distribution	n, and	skewne	ess.				
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.	230		TI	hese reco	mmendation	is are ba	ased upo	on the resi	ults of the sir	nulation stud	lies summa	arized i	in Singh	h, Maio	chle, ar	nd Lee	(2006).	
Comparison	231		Howe	ever, simu	lations resul	lts will no	ot cover	all Real V	Vorld data se	ts; for addition	onal insight	t the u	ser may	y want	to con	sult a s	tatisticia	an.
Common	232																	
Ceneral Statistics Ceneral Statistics Total Number of Observations 67	233	PCP																
Total Number of Observations 67	234																	
Number of Missing Observations 1 238	235									Statistics								
Number of Detects 24	236				I ota	I Numbe	er of Obs	servations	67									
Number of Distinct Detects 22	237						ll	- f D - t t -	24				Numbe					
Minimum Detect 0.068 Minimum Non-Detect 0.02	238				N								Numb					
Maximum Non-Detect 150					- IN	- Iuiiibei C							INUITID					
Variance Detects 2227 Percent Non-Detects 64.18%																		
Mean Detects 22.64 SD Detects 47.19																		
Median Detects 5.15 CV Detects 2.084																		
Skewness Detects 2.359 Kurtosis Detects 4.099							Media	n Detects										
Mean of Logged Detects 1.285 SD of Logged Detects 2.109							Skewnes	s Detects	2.359						Kur	tosis D	etects	4.099
Normal GOF Test on Detects Only						Mean	of Logge	d Detects	1.285					SE	of Log	gged D	etects	2.109
Shapiro Wilk Test Statistic 0.497 Shapiro Wilk GOF Test																		
Shapiro Wilk Test Statistic 0.497 Shapiro Wilk GOF Test	248							Norn	nal GOF Tes	t on Detects	Only							
250 5% Shapiro Wilk Critical Value 0.916 Detected Data Not Normal at 5% Significance Level	249				S	Shapiro \	Wilk Tes	st Statistic	0.497			Sha	apiro W	ilk GO	F Test			
Lilliefors Test Statistic 0.423	250				5% S						Detected D				•	nificano	ce Level	
252 5% Lilliefors Critical Value 0.177 Detected Data Not Normal at 5% Significance Level	251																	
255 Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs KM Mean 8.276 KM Standard Error of Mean 3.702 KM SD 29.66 95% KM (BCA) UCL 14.6 258 95% KM (t) UCL 14.45 95% KM (Percentile Bootstrap) UCL 14.66 259 95% KM (z) UCL 14.37 95% KM Bootstrap t UCL 29.01	252				5	5% Lillie							ot Norm	nal at 5	% Sigr	nificano	ce Level	
Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs KM Mean 8.276 KM Standard Error of Mean 3.702 KM SD 29.66 95% KM (BCA) UCL 14.6 258 95% KM (t) UCL 14.45 95% KM (Percentile Bootstrap) UCL 14.66 259 95% KM (z) UCL 14.37 95% KM Bootstrap t UCL 29.01	253						Det	ected Dat	a Not Norma	l at 5% Signi	ificance Lev	vel						
Z56 KM Mean 8.276 KM Standard Error of Mean 3.702 257 KM SD 29.66 95% KM (BCA) UCL 14.6 258 95% KM (t) UCL 14.45 95% KM (Percentile Bootstrap) UCL 14.66 259 95% KM (z) UCL 14.37 95% KM Bootstrap t UCL 29.01	254						1/1 A A		N			A.1						
256 257 KM SD 29.66 95% KM (BCA) UCL 14.6 258 95% KM (Percentile Bootstrap) UCL 14.66 259 95% KM (z) UCL 14.37 95% KM Bootstrap t UCL 29.01	255				Kaplan-	-Meier (l				itical Values	and other l	Nonpa						2.700
258 95% KM (t) UCL 14.45 95% KM (Percentile Bootstrap) UCL 14.66 259 95% KM (z) UCL 14.37 95% KM Bootstrap t UCL 29.01	256												K					
259 95% KM (z) UCL 14.37 95% KM Bootstrap t UCL 29.01	257						QE0/ I/					OE (D/_ L/ N / I					
209 200 //M Chahushau LICL 10.20	258											95	/o r ∖IVI (I				<i>'</i>	
260 35 % KWI Chebyshev OCL 19.36 95 % KWI Chebyshev OCL 24.41	259					90% KV										•		
	260				;	JU /0 KIV	и оперу	SHEV UCL	19.30					90 /0 r	VIVI CITE	-pysile	v UCL	۲٦.4١

	Α		В	floor	С	\Box		D		E		F		G			Н					J			· k			L
261						97.5	,% K	M Ch	ebysh	ev UCL	_ 3	1.4									99%	KM	I Che	∌bys	shev	/ UCL	4	5.11
262										005							_											
263										na GOF Statistic		.4	etec	nea (osen	/atioi				D-		- 00	- T-					
264										al Value						4 D-			erson							£:		
265							5%			Statistic		0.837		ט	etecte	а ра	ita iv		mogo						igni	ficanc	e Le	vei
266							E0			al Value		0.246		D.	otooto	d Da	to N								iani	ficanc	010	vol
267								_		ita Not			tribu							ו טוס	ilibi	uteu	al 5	/0 SI	igili	licaric	e Le	vei
268								Jelec	leu Da	ila NOL	Gaiiiii	ום טוטנו	uibu	ileu a	1370	Sigili	licai	ice L	evei									
269										Gamma	Statio	etice or	n De	atecto	nd Dat	ha Or	nlv											
270										t (MLE)		0.364		Jicon	Ju Du	La 01	··· <i>y</i>			k	star	(hia	s co	rrec	ted	MLE)		0.346
271								Th		t (MLE)		2.2							Th			•				MLE)		55.38
272										t (MLE)		7.48														ected)		6.63
273								M		detects	1	2.64											(5.				-	0.00
274											, –																	
275									Gamr	na ROS	S Stati	stics us	sina	ı lmp	uted N	lon-[Dete	cts							—			
276				GI	ROS m	nav r	not b			n data			_						vation	is at	mu	ltiple	e DLs					
277		C	ROS ma																						., <1	5-20)		
278										GROS													`					
279										s espec															-			
280			For ga	amma	a distri	bute	d de			-	-				-				na dis	tribu	utior	n on	KM (estir	mat	es		
281 282										linimum		.01			•			-								Mean	;	8.118
283									M	aximum	15	0													M	edian	C	0.01
284										SD	2	9.93														CV	:	3.687
285									k ha	t (MLE)) (.165								k	star	(bia	s co	rrect	ted	MLE)	(0.168
286								Th	eta ha	t (MLE)) 4	9.17				Theta star (bias corrected MLE nu star (bias corrected							MLE)	4	8.42			
287									nu ha	t (MLE)) 2	2.13				nu star (bias corrected)							2	22.47				
288					Adjus	ted L	_eve	l of Si	gnifica	ance (β)) 0	.0464				nu star (bias corrected)												
289			Арр	prox	imate	Chi S	Squa	are Va	alue (2	2.47, α) 1:	2.69						Ad	justed	d Ch	ni Sc	quare	e Val	lue ((22.	47, β)	1	2.53
290		95	% Gamma	іа Ар	proxin	nate	UCI	(use	when	n>=50) 1	4.37				9	5% (Gam	na Ac	djus	ted	UCL	(use	e wh	ien	n<50)	1	4.56
291													-											-			1	
292								E	stima	tes of G	amm	a Parai	met	ers u	sing k	(M E	stima	ates										
293									Mea	an (KM)) 8	3.276													SD	(KM)	2	9.66
294								\	/arian	ce (KM)	87	9.9											SE c	of Me	ean	(KM)	;	3.702
295									k h	at (KM)) 0	.0778												k s	star	(KM)	0	0.0843
296										at (KM)	1	0.43												nu s	star	(KM)		1.3
297										at (KM)	'	6.3														(KM)		8.17
298							-			ile (KM		.348									_					(KM)		20.25
299					9	}5 <u>%</u> (gam	ma p	ercent	ile (KM) 4	8.21								999	% ga	amm	a pe	rcer	ntile	(KM)	14	13
300			_																									
301												plan-M	1eie r	r (KM) Stat	istics	;											
302									-	1.30, α		.767														30, β)		4.674
303	9	5% G	amma Ap	pprox	imate	KM-	·UCI	_ (use	when	n>=50) 1	9.61			(95%	Gam	ıma A	Adjust	ted k	≺M-	UCL	(use	e wh	ien	n<50)	2	20
304																												
305										mal GC			Dete	cted	Obser	vatio	ons C						_					
306										Statistic		0.96 Shapiro Wilk GOF Test																
307					5%	₃ Sha				al Value		0.916 Detected Data appear Lognormal at 5% Significance Level																
308										Statistic		0.118 Lilliefors GOF Test 0.177 Detected Data appear Lognormal at 5% Significance Level																
309						5%	, Lilli ——			al Value		1.177								ogno	orma	al at	5% \$	Sign	nifica	ance l	_eve	<u> </u>
310								Det	ected	Data a	ppear	Logno	rma	at 5	% Sig	Initic	ance	Lev	əl									
311												.i	11-1			N 1.												
312								L	ognor	mal RO	S Sta	tistics (Usir	ng Im	puted	Non	-Det	ects										

	Α	В	С	D	E	F	G	Н	l		J	K	L	
313					riginal Scale	8.254				l		Log Scale	-1.412	
314					riginal Scale	29.89						Log Scale	2.851	
315		95% t l	`	•	of ROS data)	14.35			95%	6 Percen	tile Boo	tstrap UCL	15.06	
316				95% BCA Bo	ootstrap UCL	17.11				959	% Boots	strap t UCL	17.22	
317				95% H-UC	L (Log ROS)	48.56								
318														
319			Statis	stics using KI	VI estimates of	on Logged D	ata and Assu	ıming Logno	rmal Distri	bution				
320				KM M	ean (logged)	-1.148					KM	Geo Mean	0.317	
321				KM	SD (logged)	2.517			95%	6 Critical	H Value	e (KM-Log)	3.111	
322			KM Standa	rd Error of M	ean (logged)	0.417				95%	H-UCL	(KM -Log)	19.76	
323				KM	SD (logged)	2.517			95%	6 Critical	H Value	e (KM-Log)	3.111	
324			KM Standa	rd Error of M	ean (logged)	0.417								
325						I	1							
326						DL/2 S	tatistics							
327			DL/2	Normal					DL/2 Log	-Transfo	rmed			
328				Mean in O	riginal Scale	8.563				ı	Mean in	Log Scale	0.0295	
329				SD in O	riginal Scale	29.81					SD in	Log Scale	1.808	
330			95% t l	JCL (Assume	es normality)	14.64		SD in Log 95% H-St						
331			DL/2	is not a recor	mmended me	thod, provid	ed for compa	arisons and I	nistorical re	easons		l		
332														
333					Nonparame	tric Distribut	ion Free UC	L Statistics						
334				Detected [Data appear l	_ognormal D	istributed at	5% Significa	nce Level					
335														
336						Suggested	UCL to Use							
337			95	5% KM (Chel	oyshev) UCL	24.41								
338							1							
339		Note: Sugge	stions regard	ding the selec	ction of a 95%	6 UCL are pr	rovided to he	lp the user to	select the	e most ap	propria	te 95% UCI		
340			F	Recommenda	ations are bas	sed upon da	ta size, data	distribution,						
341		These reco	mmendation	s are based (upon the resu	ılts of the sin	nulation stud	ies summari	Lee (2006).					
342	H	owever, simu	lations result	ts will not cov	er all Real W	orld data se	ts; for addition	nal insight t	lt a statistici	an.				
343														
J43														

1	A B C	D E UCL Statis	F tics for Unce	G ensored Full Da	H Ita Sets	I	J	K	L
2									
3	User Selected Options	3							
4	Date/Time of Computation	ProUCL 5.12/28/2018 6:	53:11 PM						
5	From File	5034.01 Organics, Boiler	Room.xls						
6	Full Precision	OFF							
	Confidence Coefficient	95%							
7	Number of Bootstrap Operations	2000							
8									
9									
10	DRO								
11									
12			General	Statiation					
13	Tata	I Niverbay of Observations		Statistics		Niversia	u of Diotionat	Observations	
14	lota	Number of Observations	67						56
15		* ** *	4.4			Numbe	of ivilssing	Observations	3
16		Minimum	1.4					Mean	290.5
17		Maximum	5000					Median	73
18		SD	663				Std. I	Error of Mean	81
19		Coefficient of Variation	2.283					Skewness	5.76
20									
21			Normal C	GOF Test					
22		Shapiro Wilk Test Statistic	0.444			Shapiro Wi	lk GOF Test		
23		5% Shapiro Wilk P Value	0		Data Not	Normal at	5% Significa	nce Level	
24		Lilliefors Test Statistic	0.331			Lilliefors	GOF Test		
25	5	5% Lilliefors Critical Value	0.108		Data Not	Normal at	5% Significa	nce Level	
26		Data Not	Normal at 5	% Significance	Level				-
27									
28		Ass	suming Norn	nal Distribution					
29	95% N	ormal UCL			95% L	JCLs (Adju	sted for Ske	wness)	
30		95% Student's-t UCL	425.6		9	5% Adjuste	ed-CLT UCL	(Chen-1995)	484.6
31					ę	5% Modifi	ed-t UCL (Jo	ohnson-1978)	435.1
32									
33			Gamma (GOF Test					
		A-D Test Statistic	0.998		Anders	on-Darling	Gamma GC	F Test	
34		5% A-D Critical Value	0.831	Data				gnificance Lev	el
35		K-S Test Statistic	0.108				v Gamma G	_	
36		5% K-S Critical Value	0.116	Detected of				5% Significan	ce Level
37		Detected data follow App						- 3	
38					g				
39			Gamma	Statistics					
40		k hat (MLE)	0.44			· ·	star (hias co	rrected MLE)	0.43
41		Theta hat (MLE)	660.5				•	rrected MLE)	675.4
42		nu hat (MLE)	58.93			ineld	•	as corrected)	57.62
43	N.A.	LE Mean (bias corrected)	290.5				,	as corrected)	442.9
44	IVI	LE INICATI (DIAS COTTECTED)	230.0		Α.	nnrovin = +	-	-	41.17
45	A 11	atad Laval of Circuiti	0.0404		Α			Value (0.05)	
46	Adju	sted Level of Significance	0.0464			A	ujustea Chi S	Square Value	40.87
47			• =	81					
48				ma Distribution					
49	95% Approximate Gamm	na UCL (use when n>=50)	406.5		95% Adjı	isted Gam	ma UCL (us	e when n<50)	409.6
50									
51			Lognormal	GOF Test					
52		Shapiro Wilk Test Statistic	0.96		Shapii	o Wilk Log	normal GOF	Test	
					•				

53	Α	В			С	5% 5	D Shapiro	lliW c	E k P Value	0.0	815		G		H appe	ear Lo	l gnorm	al at	J : 5% S			K e Leve	l l	L
54						Li	lliefors	s Tes	t Statistic	0.0	828				L	.illiefo	rs Log	norm	nal G	OF Te	est			
55					ļ	5% Li	lliefors	Criti	ical Value	0.1	108			Data	арре	ear Lo	gnorm	al at	5% 5	Signif	icanc	e Leve	Ī	
56								Da	ita appeai	Logno	rmal a	at 5%	6 Signifi	icance	Leve	el								
57	-																							
58										Logr	orma	l Sta	tistics											
59						Minir	num of	f Log	ged Data	0.3	336								Mea	an of	logge	ed Data	,	4.198
60						Maxir	num of	f Log	ged Data	8.8	517								S	3D of	logge	ed Data		1.956
61																							-	
62									Ass	uming l	_ogno	rmal	Distrib	ution										
63									% H-UCL	909.									•	•		E) UCL		65.6
64							-		/UE) UCL								97.59	% Ch	nebys	hev (MVUI	E) UCL	. 13	51
65					99%	Chel	oyshev	/ (MV	/UE) UCL	1905														
66																								
67									onparame															
68						Data	a appe	ear to	follow a	Discern	ible D	Distrib	bution a	t 5% S	Signifi	icance	Level							
69																								
70									•			ribut	ion Free	e UCL	s									
71									CLT UCL		7											ife UCL		25.6
72									strap UCL													p-t UCL		34.8
73									strap UCL								95%	6 Pe	rcent	ile Bo	otstra	ap UCL	. 44	13.1
74									strap UCL														L	
75							•		, Sd) UCL											`		d) UCL		13.5
76				97.	.5% C	hebys	shev(M	lean,	, Sd) UCL	796.	3						99% (Cheb	yshe	⊮(Me	an, S	d) UCL	. 10	96
77																								
78								Suggested UCL to Use sted Gamma UCL 409.6																
79		95% Adjusted Gamma UCL 409.6								<u> </u>														
80			When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test																					
81		\ \ /b = =							• • • • • • • • • • • • • • • • • • • •				•								- i- D	LICI		
82		vvnen	і аррі	icabie	e, it is	sugge	estea t	o use	e a UCL b	asea u	pon a	aisti	ribution	(e.g.,	gamn	na) pa	issing	botn	GOF	- tests	3 IN P	roucl		
83		Noto: Ci	IGGOS	tions	rogor	rdina	ho col	ootio	n of a 95°	/ LICI	oro pr	rovid	ad to be	ala tha	LICOR	to co	oot the	. ma	ct on	nronr	ioto ()	E9/ 11C	١.	
84		Note. St	ugges	5110115					ns are ba											propri	ale 9	5 % UC	·L.	
85		These	racon	nman					on the resi											le an	ط ا مد	(2006	<u> </u>	
86		However,																						
87		10000001,	Jiiiiai	ationic	J 1000		11100 00	0 101	an rear v	vona a	110 00	,,,,,,,	or addition	Onai ii	ioigiii		001 1110	2y VVC	JIII 10				,iuii.	
88																								
89	ORO																							
90																								
91										Ge	neral	Stati	stics											
92 93					Tota	al Nun	nber of	f Obs	ervations								Numb	er o	f Dist	inct C)bser	vations	Ę	55
																						vations		0
94 95									Minimum	1.1												Mean		28.9
96											30													
96	00 1000								5	Std. E	rror c	of Mean	23	35.4										
98	Coefficient of Variation 2 200								ewness		5.546													
99																								
100		Normal GOF Test																						
101						Shapi	ro Wilk	(Tes	t Statistic	0.4	154					Sh	apiro V	Vilk (GOF	Test				
101									k P Value						Data N		rmal a				nce Le	evel		
102						Li	lliefors	s Tes	t Statistic	0.3	331					L	.illiefor	s GC	OF Te	est				
103					į	5% Li	lliefors	Criti	ical Value	0.1	11				Data N	lot No	rmal a	t 5%	Sigr	nificar	nce Le	evel		=
104										1													_	

107	105	A B C D E Data Not	F Normal at 5	G H I J K L 5% Significance Level	\dashv
Assuming Normal Distribution 95% Normal UCL 95% Normal UCL 1222 95% Adjusted for Skewness) 138 95% Adjusted-CLT UCL (Chen-1995) 138 131 95% Modified-t UCL (Johnson-1978) 124 131 131 A-D Test Statistic 0.714 Anderson-Darling Gamma GOF Test 113 A-D Test Statistic 0.714 Anderson-Darling Gamma GOF Test 114 95% A-D Critical Value 0.844 Detected data appear Gamma Distributed at 5% Significance Let 115 KS-Test Statistic 0.101 Norman Conversion of Conver					
109		Ass	suming Norr	rmal Distribution	\exists
100		95% Normal UCL		95% UCLs (Adjusted for Skewness)	
110		95% Student's-t UCL	1222	95% Adjusted-CLT UCL (Chen-1995) 1389	
111 112 113 114 115				95% Modified-t UCL (Johnson-1978) 1249	
113					
119	112		Gamma (GOF Test	
115	113		0.714		
116	114	5% A-D Critical Value	0.844	Detected data appear Gamma Distributed at 5% Significance Level	
116	115			-	
17	116				
119	117	Detected data appear	Gamma Dis	istributed at 5% Significance Level	
19	118				
Theta hat (MLE) 2162 Theta star (bias corrected MLE) 220 121 122 123 124 125	119	11.005			
121	120	` ')
MLE Mean (bias corrected) 828.9 MLE Sd (bias corrected) 135		` ,			=
Approximate Chi Square Value (0.05) 33		` /			
225		MLE Mean (bias corrected)	020.9	· · ·	,
Assuming Gamma Distribution		Adjusted Level of Significance	0.0463		
127		Adjusted Level of digrillicance	0.0403	Adjusted Cili Oquale Value 33.33	
128		Δοσ	uming Gam	mma Distribution	_
129 130					_
130		coss representate damma dos (dos mientos dos)	- 1100	1200 Majasida dalililla del (del mieli il de)	-
Shapiro Wilk Test Statistic 0.952 Shapiro Wilk Lognormal GOF Test 132 5% Shapiro Wilk P Value 0.0306 Data Not Lognormal at 5% Significance Level 133 Lilliefors Test Statistic 0.0975 Lilliefors Lognormal GOF Test 134 5% Lilliefors Critical Value 0.11 Data appear Lognormal at 5% Significance Level 135 Data appear Approximate Lognormal at 5% Significance Level 136 Lognormal Statistics 138 Minimum of Logged Data 0.0953 Mean of logged Data 4 139 Maximum of Logged Data 9.547 SD of logged Data 2 140 Assuming Lognormal Distribution 141 Assuming Lognormal Distribution 142 95% H-UCL 4841 90% Chebyshev (MVUE) UCL 400 143 95% Chebyshev (MVUE) UCL 5041 97.5% Chebyshev (MVUE) UCL 648 144 99% Chebyshev (MVUE) UCL 9309 Nonparametric Distribution Free UCL Statistics			Lognormal	al GOF Test	_
132		Shapiro Wilk Test Statistic			-
133			0.0306	Data Not Lognormal at 5% Significance Level	=
134 5% Lilliefors Critical Value 0.11 Data appear Lognormal at 5% Significance Level 135		Lilliefors Test Statistic	0.0975	Lilliefors Lognormal GOF Test	
135 Data appear Approximate Lognormal at 5% Significance Level 136		5% Lilliefors Critical Value	0.11	Data appear Lognormal at 5% Significance Level	
136 137 Lognormal Statistics 138 Minimum of Logged Data 0.0953 Mean of logged Data 4 139 Maximum of Logged Data 9.547 SD of logged Data 2 140		Data appear Approx	kimate Logn	normal at 5% Significance Level	
137 Lognormal Statistics 138					
139 Maximum of Logged Data 9.547 SD of logged Data 2 140 141 Assuming Lognormal Distribution 142 95% H-UCL 4841 90% Chebyshev (MVUE) UCL 400 143 95% Chebyshev (MVUE) UCL 5041 97.5% Chebyshev (MVUE) UCL 648 144 99% Chebyshev (MVUE) UCL 9309 145 Nonparametric Distribution Free UCL Statistics			Lognorma	al Statistics	
139 Maximum of Logged Data 9.547 SD of logged Data 2	138	Minimum of Logged Data	0.0953	Mean of logged Data 4.992	2
Assuming Lognormal Distribution 142 95% H-UCL 4841 90% Chebyshev (MVUE) UCL 400 143 95% Chebyshev (MVUE) UCL 5041 97.5% Chebyshev (MVUE) UCL 648 144 99% Chebyshev (MVUE) UCL 9309 445 145 Nonparametric Distribution Free UCL Statistics 45 Invite and Ethysical Action of Ethysical Action of Ethysical Action (Control of Ethysical Action of Ethysical Action of Ethysical Action (Control of Ethysical Action of Ethysical Action of Ethysical Action (Control of Ethysical Action of Ethysical Action of Ethysical Action (Control of Ethysical Action of Ethysical Action of Ethysical Action (Control of Ethysical Action of Ethysical Action (Control of Ethysical Action of Ethysical Action (Control o		Maximum of Logged Data	9.547	SD of logged Data 2.273	3
142 95% H-UCL 4841 90% Chebyshev (MVUE) UCL 400 143 95% Chebyshev (MVUE) UCL 5041 97.5% Chebyshev (MVUE) UCL 648 144 99% Chebyshev (MVUE) UCL 9309 145 146 Nonparametric Distribution Free UCL Statistics	140				
143 95% Chebyshev (MVUE) UCL 5041 97.5% Chebyshev (MVUE) UCL 648 144 99% Chebyshev (MVUE) UCL 9309 145 146 Nonparametric Distribution Free UCL Statistics	141				
144 99% Chebyshev (MVUE) UCL 9309 145 146 Nonparametric Distribution Free UCL Statistics	142				
145 Nonparametric Distribution Free UCL Statistics Pate apparate follows Discognible Distribution at FW Significance Level	143	• • • • • • • • • • • • • • • • • • • •		97.5% Chebyshev (MVUE) UCL 6481	
Nonparametric Distribution Free UCL Statistics	144	99% Chebyshev (MVUE) UCL	9309		
Date apparate fallows Discognible Distribution of EW Clareff and a Level	145		ed Brown	dia Face HOL Oratistics	
147 Data appear to follow a Discernible Distribution at 5% Significance Level		·			_
	147	Data appear to follow a D	uscernible D	Distribution at 5% Significance Level	_
Nonperometric Distribution Free LICLs		N	omotrio Dist	etribution Eros IICI o	_
Nonparametric Distribution Free UCLs 95% CLT LICH 1216					=
150 OFFIC Chandrad Postetron LICH 1019					_
OF Whell's Postetion LICH 2701				·	=
102 0FW DCA Poststrop LICL 1420		·		95% Percentile Bootstrap OCL 1260	
100) Chahushau/Maan Cd/ UCL 155		·		95% Chebyshev(Mean, Sd) UCL 1855	\blacksquare
194		97.5% Chebyshev(Mean, Sd) UCL	2299	95% Chebyshev(Mean, Sd) UCL 3171	=
97 5% Chenyshev(Mean Sd) HCT 2799 QU% Chehyshev(Mean Sd) HCT 217		37.3% Chebyshev(Mean, 30) UCL	2233	33 % Chebyshev(weah, 3u) OCL 3171	=
155 97.5% Chebyshev(Mean, Sd) UCL 2299 99% Chebyshev(Mean, Sd) UCL 317					I

457	Α		В			С		D		E	F Suggested	G UCL to U	se	Н		l			J	I		K		L
157						95	5% Ad	justed	Gamm	a UCL													T	
158																								
159		No	te: Su	aaes	tions	regard	dina tl	ne sele	ction o	f a 959	% UCL are p	rovided to	help	the use	r to s	elect th	e m	ost a	appro	priat	te 95	5% UC	L.	
160				-							sed upon da								•					
161		ТІ	hese re	ecom	nmen						ults of the sir								chle. a	and ¹	Lee	(2006).	
162											Vorld data se													
163		11011	JV01, J	iiiiaic	ation	0 10001	ito wiii	1101 00	voi aii	TOUI V	vona data se	,10, 101 440	110011	iai irioigi		4001 111	uy v	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10 00	noui			Juli.	
164																								
165	PCP																							
166	FOF																							
167											Conoral	Statistics												
168						Tota	l Nium	ber of	Obson	otions		Statistics				Num	hor	of D	ictino	+ Oh	con	ations	,	2
169						TOta	i Num	ibei oi v	Observ	alions	2													
170									N 4:-		0.075					Num	ber	OT IVI	issing) Ob	serv	ations		57
171										nimum												Mean		0.688
172									Max	kimum	1.3										IV	/ledian	(0.688
173																								
174											his data set o													
175						Dat	ta set			-	oute reliable		-			d estim	ate	s!						
176									The da	ata set	for variable	PCP was	not p	orocesse	ed!									
177																								
178					lt i	is sugg	jested	to coll	ect at l	east 8	to 10 observ	ations bef	ore u	using the	ese si	atistica	l me	etho	ds!					
179				If pos	ssibl	e, com	pute a	and col	lect Da	ta Qua	ality Objectiv	es (DQO)	base	ed samp	le siz	e and a	anal	ytica	ıl resu	ılts.				
180																								
181																								
182																								
	TEQ																							
184																						-		
185											General	Statistics												
186						Tota	l Num	ber of	Observ	ations	6					Num	ber	of D	istinc	t Ob	serv	ations	; (6
187																Num	ber	of M	issing) Ob	serv	ations	; (0
188									Mir	nimum	1.63											Mean	1 6	3.96
189									Max	kimum	144										N	/ledian	1 5	55.7
190										SD	50.17								Std.	Erro	or of	Mean	1 2	20.48
191							Со	efficien	nt of Va	riation	0.784										Ske	wness	; 1	0.629
192					Note	e: Sam	ple si:	ze is sr	nall (e.	g., <10)), if data are	collected	usin	ıg ISM a	pproa	ach. voi	u sh	ould	use					
193							-		•	-	Guide on IS			-		-								
194				•	J -	-				_	use Cheby	•		•	•									
195					Che						sing the Nor					•			_51					
196					J.10	, 0, 10			_ 50mp	u		.pa.a	uii		_ ~ P									
197											Normal (GOF Test												
198							Shopi-	o Wilk	Toot S	tatiatia		162[hapiro	\A/;!!	, CO	C T					
199								o Wilk (Doto							200 '	0.15		
200						J% S								Data a	ppeal	Lilliefo			-	ıcan	ice L	-evel		
201						-		liefors						Dete	nn					6		01:51		
202							o% LII	liefors (F0/ 0: :	c	Data a		inorma	ıı at	5%	Signi	ican	ice L	_evel		
203									Data	appe	ar Normal at	5% Signi	rıcan	ce Leve	I									
204																								
205										As	suming Nor	mal Distrib	utior											
206						95% No								98		CLs (Ad								
207							9	5% Stu	udent's	t UCL	105.2				95	% Adju	ste	d-CL	TUC	L (C	hen	-1995)) 10	3.3
208															9	5% Mo	difie	d-t L	JCL (John	ison.	-1978)) 10	06.1
												*												

	Α		В		С		D		E	F	G		Н				J		K	L
209											00F T									
210							A D	T . 0			GOF Test				D !!					
211								Test St		0.365 0.715	Datas	لم لم ما					ma GO			and I must
212						5		Critical Test S			Detec	tea a					ımma G			nce Level
213						5		Critical		0.219	Dotoc	tod d								nce Level
214										Gamma Dis						DISTILL	uteu at	J /6 J	igillicai	ice Level
215							electe.	u uata t	appear	Gaillilla Dis	stributed at	370 0	Jigi iiii C	ance L	.cvci					
216										Gamma	Statistics									
217								k hat	(MLE)							k star (bias co	rrecte	ed MLE)	0.611
218							Th	eta hat									•		d MLE)	104.7
219								nu hat	` '								•		rrected)	7.329
220					N	ILE M	lean (b	ias corr		63.96							•		rrected)	81.83
221 222							•		•					Арр	roxima	ite Chi	Square	• Valu	e (0.05)	2.353
223					Adju	ısted l	_evel o	f Signifi	icance	0.0122						Adjust	ed Chi S	Squar	e Value	1.467
224																				
225									Ass	suming Gam	ıma Distrib	ution								
226		95%	Approxii	mate (Gamm	a UCI	L (use	when n	>=50))	199.2			95%	Adjust	ed Gar	nma L	JCL (use	e whe	n n<50)	319.6
227																				
228										Lognorma	I GOF Tes	l								
229						Shapi	ro Wilk	Test S	tatistic	0.803			Sh	apiro '	Wilk Lo	gnorn	nal GOF	- Test		
230					5% S	Shapir	o Wilk	Critical	Value	0.788		Da	ata app	ear Lo	gnorm	al at 5	% Signi	ificanc	e Level	
231						Li	lliefors	Test S	tatistic	0.295				Lilliefo	rs Logi	norma	GOF T	est		
232					į	5% Lil	lliefors	Critical		0.325					gnorm	al at 5	% Signi	ificanc	e Level	
233								Data a	appear	Lognormal	at 5% Sign	ifican	ice Lev	el						
234																				
235			Lognormal Statistics Minimum of Logged Data 0.489 Mean of logged Data																	
236																				
237						Maxir	num of	Logge	d Data	4.97							SD of	flogge	ed Data	1.605
238									A		al Diatri									
239								0E0/ I	ASSI H-UCL	uming Logno 11585	rmai Distri	Dutio	n		000	/ Chal	h. raha. r	/N/N/III	E) UCL	261.3
240					05%	Chok	ovehov	(MVUE		337.8							-	•	E) UCL	444
241								(MVUE	•	652.5					37.37	o Cilei	Dysnev	(10100	L) UCL	444
242					3370	. 51101	.,	(V OL	., 552	552.5										
243								Nonr	oarame	etric Distribu	ion Free II	CL S	tatistics	S						
244						Data	a appe			Discernible [e Level					
245																				
246247								ı	Nonpa	rametric Dis	ribution Fr	ee U(CLs							
248							9	5% CL		97.64							95% Ja	ackkn	ife UCL	105.2
249					95%	6 Star	ndard E	Bootstra	p UCL	93.89						9	95% Bo	otstra	p-t UCL	124.1
250					!	95% l	Hall's B	Bootstra	p UCL	185.3					95%	6 Perc	entile B	ootstr	ap UCL	96.54
251						95%	BCA B	Bootstra	p UCL	96.82										
252				90% Chebyshev(Mean, Sd) UCL 125.4 95% Chebyshev(Mean, Sd) UCL 1										153.2						
253	07 F0/ Chabushau/Maan Cd/ LICI 101 0 000/ Chabushau/Maan Cd/ LICI										267.7									
254																				
255	Suggested UCL to Use																			
256						9	95% St	udent's	-t UCL	105.2										
257																				
258		Note	: Sugge	estions						6 UCL are p							approp	riate 9	95% UC	L.
259		-								sed upon da										
260		The	se reco	mmer	ndation	ns are	based	upon tl	ne resu	ılts of the sir	nulation stu	udies	summa	arized	in Sing	jh, Ma	ichle, ar	nd Lee	e (2006)	
			_	•	_								_							

	Α	В	С	D	E	F	G	Н	I	J	K	L
261	Ho	wever, simul	ations result	s will not cov	er all Real W	/orld data se	ts; for addition	onal insight th	ne user may	want to cons	ult a statistic	ian.
262												

1	A B C	D E UCL Statis	F tics for Unce	G H ensored Full Data Sets	I	J K	L
2							
3	User Selected Options	3					
4	Date/Time of Computation	ProUCL 5.12/28/2018 7:4	43:36 PM				
5	From File	5034.01 Organics, Boiler	Room 0-2'.:	ds			
	Full Precision	OFF					
6	Confidence Coefficient	95%					
7	Number of Bootstrap Operations	2000					
8	Number of Bootstrap Operations	2000					
9							
10	DRO						
11	DRO						
12			Comercia	Danatination			
13	- .		General	Statistics	N 1	(5) ::	- 00
14	lota	I Number of Observations	46			of Distinct Observations	39
15					Number	of Missing Observations	2
16		Minimum	3.8			Mean	372.7
17		Maximum	5000			Median	130
18		SD	771.8			Std. Error of Mean	113.8
19		Coefficient of Variation	2.071			Skewness	5.099
20							
21			Normal C	OF Test			
22	5	Shapiro Wilk Test Statistic	0.457		Shapiro Will	k GOF Test	
23	5% S	Shapiro Wilk Critical Value	0.945	Data N	Not Normal at 5	5% Significance Level	
24		Lilliefors Test Statistic	0.316		Lilliefors (GOF Test	
25	5	5% Lilliefors Critical Value	0.129	Data N	Not Normal at 5	5% Significance Level	
26		Data Not	Normal at 5	% Significance Level			
27							
28		Ass	suming Norn	nal Distribution			
29	95% N	ormal UCL		959	% UCLs (Adjus	sted for Skewness)	
30		95% Student's-t UCL	563.8		95% Adjuste	d-CLT UCL (Chen-1995)	651.3
31					95% Modifie	ed-t UCL (Johnson-1978)	578.1
						· · · · · · · · · · · · · · · · · · ·	
32			Gamma (GOF Test			
33		A-D Test Statistic	0.738		erson-Darling (Gamma GOF Test	
34		5% A-D Critical Value	0.806		-	stributed at 5% Significand	ce Level
35		K-S Test Statistic	0.128			V Gamma GOF Test	
36		5% K-S Critical Value	0.128		<u> </u>	stributed at 5% Significand	re Level
37				tributed at 5% Significa		on batea at 0 /0 Oignineant	,
38		Dottostou data appear		and at 0 /0 Olymille			
39			Gamma	Statistics			
40		k hat (MLE)	0.578	Juliouoo	l. a	star (bias corrected MLE)	0.554
41						star (bias corrected MLE)	
42		Theta hat (MLE)	645.3		i neta s	` '	672.3
43		nu hat (MLE)	53.14			nu star (bias corrected)	51
44	M	LE Mean (bias corrected)	372.7			MLE Sd (bias corrected)	500.6
45			0.04:0			Chi Square Value (0.05)	35.6
46	Adju	sted Level of Significance	0.0448		Ad	ljusted Chi Square Value	35.19
47							
48				ma Distribution			
49	95% Approximate Gamm	na UCL (use when n>=50)	533.9	95% <i>A</i>	Adjusted Gamn	na UCL (use when n<50)	540.3
50							
51			Lognormal	GOF Test			
52	5	Shapiro Wilk Test Statistic	0.977	Sha	apiro Wilk Logr	normal GOF Test	

53	A		В		<u>C</u>			D Wilk (E Critical V		F 0.94	5	G		H Data app	oear	l Lognori	mal a		J Signi	ificar	K nce Le	evel	L
54							Lill	iefors	Test Sta	tistic	0.094	13				Lillie	fors Lo	gnor	mal (GOF T	est			
55						59	% Lilli	iefors (Critical V	'alue	0.12	9			Data app	oear	Lognori	mal a	at 5%	Signi	ificar	ice Le	vel	
56									Data ap	pear	Lognorn	nal a	t 5% Si	gnific	cance Lev	vel								
57																								
58											Logno	rmal	Statisti	cs										
59						N	Minim	um of	Logged	Data	1.33	5							M	lean of	f log	ged D	ata	4.845
60						M	/laxim	um of	Logged	Data	8.51	7								SD of	f log	ged D	ata	1.589
61																								
62											ıming Lo	gnoi	rmal Dis	stribu	tion									
63									95% H-		920									yshev	•	,		823.6
64									(MVUE)		1005						97.5	5% C	Cheby	yshev	(MVI	UE) U	CL	1256
65					(99% (Cheby	yshev ((MVUE)	UCL	1750													
66																								
67									•						_ Statistic									
68							Data	appea	r to follo	w a C	Discernib	le D	istributi	on at	5% Sign	ificar	ce Lev	el						
69												. .		_										
70											ametric	Distr	nbution	Free	UCLs)F0' :				F00.5
71						050:	0:		5% CLT		559.9									95% Ja				563.8
72									ootstrap		560.1							-0/ 5		5% Bo		•		826
73									ootstrap		1295						95)% P	erce	ntile B	ootsi	trap U	CL	565.7
74									ootstrap		734.6						050/			(3.4		0.0.1.	101	2007
75								-	ean, Sd)		714.1									nev(Me				868.7
76					97.5	% Ch	ebysr	nev(IVIe	ean, Sd)	UCL	1083						99%	Che	ebysr	nev(Me	ean,	Sa) U	CL	1505
77											Sugges	had I	IICI to	Lloo										
78						050	0/ \ Ai	ustad (Gamma	LICI	540.3	leu (OCL 10	USE										
79						957	⁄₀ Auj	usieu	Gaiiiiia	UCL	340.3													
80		Not	e. Sua	nesti	ons re	enard	lina th	e selei	ction of	95%	LICL ar	e nr	ovided t	n hel	p the use	er to s	elect th	ne m	nst a	nnron	riate	95%	LICI	
81		1100	.c. oug	gooti	011011							-			distribution					рргор				-
82		Th	ese red	comr	menda										es summ	-				hle ar	nd I e	ee (20	06)	
83									•						nal insigh			_				•	,	an.
84													,					,						
85																								
86	ORO																							
87 88																								
89											Gene	ral S	Statistic	S										
90						Total	Numl	ber of (Observa	tions	45						Num	nber	of Di	stinct (Obse	ervatio	ons	38
91																	Num	ber	of Mi	ssing	Obse	ervatio	ons	0
92									Minii	mum	3.1											Мє	ean	1036
93									Maxii	mum	14000											Med	ian	320
94										SD	2194									Std. E	Error	of Me	ean	327
95							Coe	efficien	t of Varia	ation	2.11	7									S	kewne	ess	4.989
96																								
97											Norm	al G	OF Tes	st										
98						SI	hapiro	o Wilk	Test Sta	tistic	0.46	2				5	Shapiro	Wilk	(GO	F Test	t			
99					5	5% Sh	hapiro	Wilk (Critical V	/alue	0.94	5			Data	Not	Normal	at 5	% Si	gnifica	ince	Level		
100							Lill	iefors	Test Sta	tistic	0.31	9					Lilliefo	ors G	OF T	Test				
101						59	% Lilli	iefors (Critical V	'alue	0.13	1			Data	Not	Normal	at 5	% Si	gnifica	ince	Level		
102									Data	a Not	Normal	at 59	% Signi	ficand	ce Level									
103																					-			
104										Ass	suming N	lorm	nal Distr	ibutio	on									

	105	Α	В	95% No	D ormal UCL	Е	F	G	H 95	% UCLs (A	Adjuste	J d for Ske	wness)	L
Comma COF Test	106				95% Stu	dent's-t UCL	1586						,	
Camma COF Test	107									95% M	odified-	t UCL (Jo	hnson-1978)	1626
100	108													
111	109							GOF Test						
111	110													
11	111							Detected						nce Level
	112									-				
	113											ibuted at	5% Significar	nce Level
116	114				Detected	i data appear	Gamma Dis	tributed at 5%	Significa	ance Level				
110	115													
The table The	116							Statistics						
119	117											`	,	
1910 MLE Mean (bias corrected) 1036 MLE Sd (bias corrected) 1468 121	118					` '				Th		•	<u> </u>	
Adjusted Level of Significance 0.0447 Approximate Chi Square Value (0.05) 30.48 122	119					` '						-	-	_
Adjusted Level of Significance 0.0447	120			M	LE Mean (bia	as corrected)	1036					•	,	
Assuming Gamma Distribution	121									Approxir			` '	
Assuming Gamma Distribution	122			Adjus	sted Level of	Significance	0.0447				Adjus	sted Chi S	Square Value	30.08
1525 95% Approximate Gamma UCL (use when n>=50) 1525 95% Adjusted Gamma UCL (use when n<50) 1545 126	123													
	124		250/ *					ma Distributio		A 12		1161 (45.5
Lognormal GOF Test	125		95% Approxii	mate Gamm	a UCL (use v	when n>=50)	1525		95% <i>F</i>	Adjusted G	amma	UCL (use	e when n<50)	1545
127	126													
129 5% Shapiro Wilk Critical Value 0.945 Data appear Lognormal at 5% Significance Level 130	127							GOF Test						
130	128				·					•				
131	129			5% S						-		•		
132 Data appear Lognormal at 5% Significance Level 133	130													
133 134	131			5							rmal at	5% Signi	ficance Level	
134	132					Data appear	Lognormal a	at 5% Significa	ance Leve	el ————				
1.55	133							l Osestestee						
135	134				Minimum of	Langed Date		Statistics				Mana	flammed Date	F 704
137	135													
138	136				waximum of i	Logged Data	9.547					2D 01	r logged Data	1.75
139	137						ina I aana	maal Diatributi						
140	138							rmai Distributi	ON		00% Ch	ahuahau	/M\/LIE\ LICI	2721
141	139			OE0/									•	
141	140				, ,	` '				97.	.J /0 UN	enysnev	(INIVUE) UCL	4230
Nonparametric Distribution Free UCL Statistics	141			99 %	Chebysnev (INIVUE) UCL	0880							
144 Data appear to follow a Discernible Distribution at 5% Significance Level 145	142					Nonnarama	tric Dietribus	ion Free LICI	Statistics	1				
145 146 1574 95% Jackknife UCL 1586 147 95% Standard Bootstrap UCL 1566 95% Bootstrap-t UCL 2304 148 95% Hall's Bootstrap UCL 3586 95% Percentile Bootstrap UCL 1635 150 95% BCA Bootstrap UCL 1981 151 90% Chebyshev(Mean, Sd) UCL 2018 95% Chebyshev(Mean, Sd) UCL 2462 152 97.5% Chebyshev(Mean, Sd) UCL 3079 99% Chebyshev(Mean, Sd) UCL 4290 153 154 Suggested UCL to Use 1545 95% Adjusted Gamma UCL 1545	143				Data annea	•					vel			
Nonparametric Distribution Free UCLs 147 95% CLT UCL 1574 95% Jackknife UCL 1586 148 95% Standard Bootstrap UCL 1566 95% Bootstrap UCL 2304 149 95% Hall's Bootstrap UCL 3586 95% Percentile Bootstrap UCL 1635 150 95% BCA Bootstrap UCL 1981 151 90% Chebyshev(Mean, Sd) UCL 2018 95% Chebyshev(Mean, Sd) UCL 2462 152 97.5% Chebyshev(Mean, Sd) UCL 3079 99% Chebyshev(Mean, Sd) UCL 4290 153 Suggested UCL to Use 155 95% Adjusted Gamma UCL 1545	144				nara ahhea		VISCOLLIINIE D	nou ibuuUII at t	, /o Olgi iili	COILCE LE	, C 1			
147 95% CLT UCL 1574 95% Jackknife UCL 1586 148 95% Standard Bootstrap UCL 1566 95% Bootstrap-t UCL 2304 149 95% Hall's Bootstrap UCL 3586 95% Percentile Bootstrap UCL 1635 150 95% BCA Bootstrap UCL 1981 151 90% Chebyshev(Mean, Sd) UCL 2018 95% Chebyshev(Mean, Sd) UCL 2462 152 97.5% Chebyshev(Mean, Sd) UCL 3079 99% Chebyshev(Mean, Sd) UCL 4290 153 154 Suggested UCL to Use 155 95% Adjusted Gamma UCL 1545	145					Nonnar	rametric Diet	ribution Free I	ICI e					
147 148 95% Standard Bootstrap UCL 1566 95% Bootstrap-t UCL 2304 149 95% Hall's Bootstrap UCL 3586 95% Percentile Bootstrap UCL 1635 150 95% BCA Bootstrap UCL 1981 95% Chebyshev(Mean, Sd) UCL 2462 151 90% Chebyshev(Mean, Sd) UCL 3079 99% Chebyshev(Mean, Sd) UCL 4290 153 154 Suggested UCL to Use 155 95% Adjusted Gamma UCL 1545	146				QF	•						95% 1	ackknife LICI	1586
149 95% Hall's Bootstrap UCL 3586 95% Percentile Bootstrap UCL 1635 150 95% BCA Bootstrap UCL 1981 151 90% Chebyshev(Mean, Sd) UCL 2018 95% Chebyshev(Mean, Sd) UCL 2462 152 97.5% Chebyshev(Mean, Sd) UCL 3079 99% Chebyshev(Mean, Sd) UCL 4290 153 Suggested UCL to Use 155 95% Adjusted Gamma UCL 1545				Q5%										
149 150 95% BCA Bootstrap UCL 1981 151 90% Chebyshev(Mean, Sd) UCL 2018 95% Chebyshev(Mean, Sd) UCL 2462 152 97.5% Chebyshev(Mean, Sd) UCL 3079 99% Chebyshev(Mean, Sd) UCL 4290 153 154 Suggested UCL to Use 155 95% Adjusted Gamma UCL 1545	148					·				Ω	5% Par		•	
151 90% Chebyshev(Mean, Sd) UCL 2018 95% Chebyshev(Mean, Sd) UCL 2462 152 97.5% Chebyshev(Mean, Sd) UCL 3079 99% Chebyshev(Mean, Sd) UCL 4290 153 Suggested UCL to Use 155 95% Adjusted Gamma UCL 1545						·					570 I GI	Source D	JOIGH OF L	1000
151 97.5% Chebyshev(Mean, Sd) UCL 3079 99% Chebyshev(Mean, Sd) UCL 4290 153 Suggested UCL to Use 155 95% Adjusted Gamma UCL 1545										95%	% Cheh	vshev(Ma	ean, Sd) UCI	2462
153 154 Suggested UCL to Use 155 95% Adjusted Gamma UCL 1545					,							• •		
Suggested UCL to Use 155 95% Adjusted Gamma UCL 1545						, 50, 552					3 3.100	, 5 5 (1410	, Ju, Ju	55
155 95% Adjusted Gamma UCL 1545							Sunnested	UCL to Use						
155				Q5	% Adjusted (
	156													

	Α	В	С	D	E	F	G	Н	I	J	K	L
157	I	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to he	lp the user to	select the n	nost appropri	ate 95% UC	L.
158			F	ecommenda	tions are ba	sed upon dat	ta size, data	distribution, a	and skewnes	SS.		
159		These recor	nmendations	are based u	ipon the resu	ılts of the sin	nulation studi	ies summariz	zed in Singh,	Maichle, and	d Lee (2006)	
160	Ho	wever, simul	ations result	s will not cov	er all Real V	/orld data se	ts; for addition	onal insight th	ne user may	want to cons	ult a statistic	cian.
161												

1	A B C	D E UCL Statis	F tics for Unce	G ensored Full Data S	H I Sets	J K	L
2							
3	User Selected Options	3					
4	Date/Time of Computation	ProUCL 5.12/28/2018 7:2	26:39 PM				
5	From File	5034.01 Organics, Refus	se Burner.xls	<u> </u>			
	Full Precision	OFF					
6	Confidence Coefficient	95%					
7	Number of Bootstrap Operations	2000					
8	Number of Bootstrap Operations	2000					
9							
10	DRO						
11	DRO .						
12			0	O4-41-41			
13	<u> </u>	101	General	Statistics			00
14	I ota	Number of Observations	34			mber of Distinct Observations	32
15					Nu	mber of Missing Observations	0
16		Minimum	1.7			Mean	422.1
17		Maximum	1900			Median	255
18		SD	458.9			Std. Error of Mean	78.7
19		Coefficient of Variation	1.087			Skewness	1.39
20		-		•			
21			Normal C	GOF Test			
22	9	Shapiro Wilk Test Statistic	0.843		Shapir	o Wilk GOF Test	
23	5% S	hapiro Wilk Critical Value	0.933	D	Data Not Norma	al at 5% Significance Level	
24		Lilliefors Test Statistic	0.18		Lillie	fors GOF Test	
25	Ę	5% Lilliefors Critical Value	0.15	D	Data Not Norma	al at 5% Significance Level	
26		Data Not	Normal at 5	 % Significance Le			
27							
28		As	suming Norn	nal Distribution			
	95% N	ormal UCL			95% UCLs (Adjusted for Skewness)	
29		95% Student's-t UCL	555.3		-	ljusted-CLT UCL (Chen-1995)	571.6
30						lodified-t UCL (Johnson-1978)	558.4
31						(**************************************	
32			Gamma (GOF Test			
33		A-D Test Statistic	0.721		Andorson Do	rling Gamma GOF Test	
34				Datastad data		na Distributed at 5% Significan	an Lovel
35		5% A-D Critical Value	0.804			nirnov Gamma GOF Test	CC LCVCI
36		K-S Test Statistic	0.132		•		00 5115
37		5% K-S Critical Value	0.159			na Distributed at 5% Significan	ce Level
38		Detected data appear	Gamma Dis	sinduted at 5% Sig	Initicance Leve	1	
39				O			
40			Gamma	otatistics -		1	0.546
41		k hat (MLE)	0.58			k star (bias corrected MLE)	0.548
42		Theta hat (MLE)	728.1		Th	neta star (bias corrected MLE)	770
43		nu hat (MLE)	39.42			nu star (bias corrected)	37.28
44	M	LE Mean (bias corrected)	422.1			MLE Sd (bias corrected)	570.1
45					Approxi	mate Chi Square Value (0.05)	24.3
46	Adju	sted Level of Significance	0.0422			Adjusted Chi Square Value	23.78
47							
48		Ass	suming Gam	ma Distribution			
49	95% Approximate Gamm	na UCL (use when n>=50)	647.5	9	95% Adjusted (Gamma UCL (use when n<50)	661.7
50							
51			Lognormal	GOF Test			
52	5	Shapiro Wilk Test Statistic	0.889		Shapiro Wilk	Lognormal GOF Test	
J.				I.			

53	Α		В		5% :		D Wilk (E Critical Valu	ue	F 0.933	G		H Data No	t Logn	l ormal :	at 5%	J Signific	ance	K Level	L
54						Lill	liefors	Test Statis	tic	0.184			L	illiefor	s Logn	ormal	GOF T	est		
55						5% Lilli	iefors (Critical Val	ue	0.15			Data No	t Logn	ormal	at 5%	Signific	ance	Level	
56								Data No	t Log	normal at	5% Sig	nifican	ce Level							
57																				
58									L	_ognorma	l Statist	ics								
59						Minim	um of	Logged Da	ata	0.531						N			ed Data	4.974
60						Maxim	ium of	Logged Da	ata	7.55							SD of	logge	ed Data	1.939
61																				
62										ing Logno	ormal Dis	stributi	ion							
63								95% H-U0		384							yshev (•	<i>'</i>	1944
64						-		MVUE) U		452					97.5%	Cheb	yshev (MVU	E) UCL	3157
65					99%	6 Cheb	yshev (MVUE) U	CL 4	542										
66										D ' - '' -		1101	o							
67								-					Statistics							
68						Data	appea	r to follow	a DIS	cernible D	JISTIDUti	on at t	o% Signifi	cance	Level					
69								Man-	no	natria Dist		Era- '	ICI -							
70							0.5			netric Dist	ribution	Free	JCLS				OE0/ 1-	ا مادادیما	4- HOL	555.3
71					0E0	0/ Cton		ootstrap U		551.5 546.4							95% Ja 5% Boo			584.3
72					901			otstrap U		586					05%		entile Bo			558.7
73								otstrap U		568					95 /0	reice	illile bo	JOISH	ар ОСС	556.7
74					90% (an, Sd) U		658.2					05% C	hahve	hev(Me	an S	A) LICI	765.1
75				0				an, Sd) U(913.6							hev(Me		•	1205
76					7.570 C	Jilobysi	ic v (ivic	.aii, 0a) 0	OL (710.0					JJ 70 O	псвуз	iic v (ivic	Jan, O	u) OOL	1200
77									Sı	uggested	UCL to	Use								
78					9	5% Adi	usted (Gamma U(661.7										
79																				
80		Note	e: Sugg	estior	ns rega	rding th	ie seled	ction of a 9	5% U	ICL are pi	rovided	to help	the user	to sele	ect the	most a	appropr	iate 9	5% UCI	
81 82								ations are I												
83		Th	ese rec	comme	endatio	ns are l	oased ι	upon the re	esults	of the sin	nulation	studie	s summa	rized i	n Singl	n, Maio	chle, an	id Lee	(2006)	
84		Howe	ver, sim	nulatio	ns resu	ults will	not cov	er all Rea	l Wor	ld data se	ets; for a	dditior	nal insight	the us	er may	y want	to cons	sult a	statistic	an.
85																				
86																				
	ORO																			
88																				
89										General	Statistic	s								
90					Tota	al Numl	ber of (Observatio	ns	34					Numbe	er of D	istinct (Obser	vations	32
91															Numbe	er of M	issing (Obser	vations	0
92								Minimu	ım	1.3									Mean	1314
93								Maximu		900									Median	675
94			·			·				565							Std. E		of Mean	268.4
95						Coe	efficien	t of Variation	on	1.191								Ske	ewness	1.348
96	_																			
97										Normal (GOF Te	st								
98								Test Statis		0.811					-		F Test			
99					5%			Critical Val		0.933			Data N				ignificaı —	nce L	evel	
100								Test Statis		0.202					lliefors					
101						5% Lilli	iefors (Critical Value		0.15		_		lot No	rmal at	5% S	ignifica	nce L	evel	
102								Data N	Not No	ormal at 5	% Signi	ficanc	e Level							
103									A .			.ue								
104									Assur	ming Norr	mal Dist	ributio	n ———							

	105	Α	В	С 95% No	rmal UCL	Е	F	G	H 95°	/ W UCLs (A	J djusted for		L
Common CoP Test Common CoP	106				95% Stu	dent's-t UCL	1768					,	*
Camma CoFTest	107									95% Mo	dified-t UCI	L (Johnson-1978	3) 1778
100	108												
11	109							GOF Test					
111 112 K-S Test Statists 0.107 Kolmogorov-Smirnov Gamma GOF Test	110												
113 S% K-S Critical Value 0.16 Detected data appear Gamma Distributed at 5% Significance Level 114 Detected data appear Camma Distributed at 5% Significance Level 115	111						0.0.0	Detected					ance Level
	112												
10	113										a Distribute	d at 5% Signification	ance Level
110	114				Detected	data appear	Gamma Dis	tributed at 5%	Significa	ance Level			
1117	115												
Theta hat (MLE) 2663 Theta star (bias corrected MLE) 2799	116							Statistics					
119	117										,		<i>'</i>
MLE Mean (bias corrected) 1314	118					` ,				The	•		*
Approximate Chi Square Value (0.5) 20	119											·	-
Adjusted Level of Significance 0.0422	120			ML	.E Mean (bia	as corrected)	1314					•	<i>'</i>
Assuming Gamma Distribution	121									Approxim		,	*
Assuming Gamma Distribution	122			Adjus	ted Level of	Significance	0.0422				Adjusted (Chi Square Valu	e 19.54
	123												
Lognormal GOF Test	124		050/ 2					ma Distributio		A 11		, .	2) 0116
Lognormal GOF Test	125		95% Approxir	nate Gamma	a UCL (use v	when n>=50)	2096		95% A	Adjusted Ga	amma UCL	(use when n<50)) 2146
127	126												
129 5% Shapiro Wilk Critical Value 0.933 Data Not Lognormal at 5% Significance Level	127							GOF Test					
129	128												
131	129			5% Sr						•		-	
132 Data appear Approximate Lognormal at 5% Significance Level 133	130												
132 133 134 135 136 137 137 138 138 139	131			59							mal at 5% S	Significance Lev	
134	132				Data a	ppear Approx	ximate Logno	ormal at 5% S	ignificand	ce Level			
154 Mean of logged Data 0.262 Mean of logged Data 5.89	133						•	l Otaliata					
Sample S	134				4::	Lancad Data		I Statistics			14-	f l d D	- 5.00
137	135												
138	136			IV	laximum of L	_ogged Data	8.683					or logged Dat	a 2.1/1
139	137							maal Diateibuti					
140	138							rmai Distributi	on 	0.0	00/ Chah	h a (NA) /(LIE) LIO	0000
141	139			0E9/ /							•	, ,	
142	140				,	,				97.5	o ∕o C⊓ebys	ilev (IVIVUE) UC	13203
Nonparametric Distribution Free UCL Statistics	141			99% (nebysnev (IVIVUE) UCL	19307						
144 Data appear to follow a Discernible Distribution at 5% Significance Level 145 146	142					Nonnarama	atric Dietribus	ion Free LICI	Statistics	•			
1444 Nonparametric Distribution Free UCLs 147 95% CLT UCL 1755 95% Jackknife UCL 1768 148 95% Standard Bootstrap UCL 1750 95% Bootstrap-t UCL 1844 149 95% BCA Bootstrap UCL 1859 150 95% BCA Bootstrap UCL 1859 151 90% Chebyshev(Mean, Sd) UCL 2119 95% Chebyshev(Mean, Sd) UCL 2483 152 97.5% Chebyshev(Mean, Sd) UCL 2990 99% Chebyshev(Mean, Sd) UCL 3984 153 Suggested UCL to Use 154 Suggested UCL to Use 155 95% Adjusted Gamma UCL 2146 In India America	143				Data annes	•					اد		
Nonparametric Distribution Free UCLs 147 95% CLT UCL 1755 95% Jackknife UCL 1768 148 95% Standard Bootstrap UCL 1750 95% Bootstrap UCL 1844 149 95% Hall's Bootstrap UCL 1835 95% Percentile Bootstrap UCL 1749 150 95% BCA Bootstrap UCL 1859 151 90% Chebyshev(Mean, Sd) UCL 2119 95% Chebyshev(Mean, Sd) UCL 2483 152 97.5% Chebyshev(Mean, Sd) UCL 2990 99% Chebyshev(Mean, Sd) UCL 3984 153 Suggested UCL to Use 155 95% Adjusted Gamma UCL 2146 Include Suggested UCL to Use	144				nara ahhea	IOIIUW a L	-130GHINDE D	nou ibuudii at t	- /o Olgi IIII	Cance Leve	<i>-</i> 1		
147 95% CLT UCL 1755 95% Jackknife UCL 1768 148 95% Standard Bootstrap UCL 1750 95% Bootstrap-t UCL 1844 149 95% Hall's Bootstrap UCL 1835 95% Percentile Bootstrap UCL 1749 150 95% BCA Bootstrap UCL 1859 151 90% Chebyshev(Mean, Sd) UCL 2119 95% Chebyshev(Mean, Sd) UCL 2483 152 97.5% Chebyshev(Mean, Sd) UCL 2990 99% Chebyshev(Mean, Sd) UCL 3984 153 154 Suggested UCL to Use 155 95% Adjusted Gamma UCL 2146 UCL	145					Nonna	rametric Diet	ribution Free I	ICI e				
147 148 95% Standard Bootstrap UCL 1750 95% Bootstrap-t UCL 1844 149 95% Hall's Bootstrap UCL 1835 95% Percentile Bootstrap UCL 1749 150 95% BCA Bootstrap UCL 1859 151 90% Chebyshev(Mean, Sd) UCL 2119 95% Chebyshev(Mean, Sd) UCL 2483 152 97.5% Chebyshev(Mean, Sd) UCL 2990 99% Chebyshev(Mean, Sd) UCL 3984 153 Suggested UCL to Use 155 95% Adjusted Gamma UCL 2146	146				OF	·					۵F	% .lackknife LIC	1768
148 95% Hall's Bootstrap UCL 1835 95% Percentile Bootstrap UCL 1749 150 95% BCA Bootstrap UCL 1859 151 90% Chebyshev(Mean, Sd) UCL 2119 95% Chebyshev(Mean, Sd) UCL 2483 152 97.5% Chebyshev(Mean, Sd) UCL 2990 99% Chebyshev(Mean, Sd) UCL 3984 153 Suggested UCL to Use 155 95% Adjusted Gamma UCL 2146				Q5%									
150 95% BCA Bootstrap UCL 1859 151 90% Chebyshev(Mean, Sd) UCL 2119 95% Chebyshev(Mean, Sd) UCL 2483 152 97.5% Chebyshev(Mean, Sd) UCL 2990 99% Chebyshev(Mean, Sd) UCL 3984 153 Suggested UCL to Use 155 95% Adjusted Gamma UCL 2146	148					·				05		·	
151 90% Chebyshev(Mean, Sd) UCL 2119 95% Chebyshev(Mean, Sd) UCL 2483 152 97.5% Chebyshev(Mean, Sd) UCL 2990 99% Chebyshev(Mean, Sd) UCL 3984 153 Suggested UCL to Use 155 95% Adjusted Gamma UCL 2146						•					,5 1 GIOGIII	.c bootstrap oc	- 1,75
151 97.5% Chebyshev(Mean, Sd) UCL 2990 99% Chebyshev(Mean, Sd) UCL 3984 153						•				95%	Chehyshe	v(Mean Sd) LIC	1 2483
153 154 Suggested UCL to Use 155 95% Adjusted Gamma UCL 2146					• `	,						• •	
Suggested UCL to Use 95% Adjusted Gamma UCL 2146						, oa, ool				3370	J. IODYSI IC	- (ou) 00	
155 95% Adjusted Gamma UCL 2146							Sunnested	UCL to Use					
155				950	% Adjusted (10 000					
	156												

	Α	B Note: Sugges	C stions regar	D rding the s	E selection of		F ALICL are pr	G ovided to be	H	to select the	J most appropria	K	L
157		Note. Sugges					sed upon dat		<u>'</u>			316 33 % OCL	•
158		These recor								-	n, Maichle, and	11 00 (2006)	
159		However, simul			·							. ,	
160		Tiowever, Simu	lations resu	its will floi	- COVEI all I	Neal VV	Toriu uata se	is, ioi additi	oriai irisigiit	the user may	y want to const	iii a statisticio	211.
161													-
162	TEQ												-
103	ILQ.												
164							General S	Statistics					
165			Tota	al Number	r of Observa	ations		<u> </u>		Numbe	er of Distinct O	hservations	61
166						20110	02				er of Missing O		0
167					Min	imum	0.49			- Trumbe	or wildowing o	Mean	81.31
168						imum	450					Median	46.42
169						SD	93.36				Std Fr	ror of Mean	11.86
170				Coeffic	cient of Var						Ota. El	Skewness	1.65
171						iduoii	1.140					OKOWIICOO	
172							Normal G	OF Test					
173				Shaniro V	Vilk Test Sta	atistic		101 1001		Shaniro W	ilk GOF Test		
174				•	piro Wilk P				Data N	<u> </u>	5% Significan	re I evel	
175					ors Test Sta				Data N		GOF Test		
176					ors Critical \				Data N		5% Significan	re I evel	
177							Normal at 5	% Significar		- Troimar at	O 70 Olgrinican		
178								70 Olgrillodi	ICC LCVCI				
179						As	suming Norn	nal Distribut	ion				
180			95% N	lormal UC	<u></u>			iai Diotribut		6 UCI s (Adii	usted for Skew	ness)	
181					Student's-	t UCI	101.1				ed-CLT UCL (103.5
182											ied-t UCL (Joh	ŕ	101.5
183													
184							Gamma (GOF Test					
185				Α	A-D Test Sta	atistic			Ande	erson-Darling	Gamma GOF	Test	
186 187					N-D Critical			Detecte			Distributed at 5		ce Level
				k	K-S Test Sta	atistic	0.0864				ov Gamma GC		
188 189					K-S Critical V			Detecte		_	Distributed at 5		ce Level
190				Dete	cted data a	ppear	Gamma Dis						
191													
192							Gamma	Statistics					
193					k hat ((MLE)	0.648			k	star (bias corr	ected MLE)	0.628
193					Theta hat ((MLE)	125.5			Theta	star (bias corr	ected MLE)	129.6
195					nu hat ((MLE)	80.37				nu star (bias	s corrected)	77.81
196			N	/ILE Mean	n (bias corre	ected)	81.31				MLE Sd (bias	s corrected)	102.6
197										Approximat	e Chi Square \	/alue (0.05)	58.49
198			Adju	ısted Leve	el of Signific	cance	0.0461			A	djusted Chi So	quare Value	58.09
199													
200	<u> </u>					Ass	suming Gam	ma Distribut	tion				
201		95% Approxi	mate Gamn	na UCL (ι	use when n	>=50)	108.2		95% A	djusted Gam	nma UCL (use	when n<50)	108.9
202	<u> </u>						1						
203	<u> </u>						Lognormal	GOF Test					
204				Shapiro W	Vilk Test Sta	atistic	0.929		Sha	piro Wilk Lo	gnormal GOF	Гest	
205	<u> </u>			5% Shap	piro Wilk P	Value	0.00159		Data Not	t Lognormal	at 5% Significa	nce Level	
206				Lillief	ors Test Sta	atistic	0.125		Li	illiefors Logn	ormal GOF Te	st	
207				5% Lilliefo	ors Critical \	Value	0.112		Data Not	t Lognormal	at 5% Significa	nce Level	
208					Data	Not L	ognormal at	5% Significa	ance Level				
200													

	Α	В	С	D	Е	F	G	Н	l	J	K	L
209												
210						Lognorma	I Statistics					
211				Minimum of L		-0.713					logged Data	
212			N	Maximum of L	_ogged Data	6.109				SD of	logged Data	1.695
213												
214							rmal Distribu	tion				
215					95% H-UCL	241.5				Chebyshev (·	241.7
216				Chebyshev (-	293.9			97.5%	Chebyshev (MVUE) UCL	366.4
217			99% (Chebyshev (MVUE) UCL	508.8						
218												
219					•		ion Free UCL					
220				Data appear	r to follow a D)iscernible D	Distribution at	5% Signific	ance Level			
221												
222					•		ribution Free	UCLs				
223					% CLT UCL	100.8					ckknife UCL	101.1
224				Standard Bo	•	100.9					otstrap-t UCL	104.9
225				5% Hall's Bo		105.7			95%	Percentile Bo	otstrap UCL	102.3
226				95% BCA Bo	-	103.1						
227				ebyshev(Me		116.9				hebyshev(Me	,	133
228			97.5% Ch	ebyshev(Me	an, Sd) UCL	155.4			99% CI	hebyshev(Me	an, Sd) UCL	199.3
229												
230						Suggested	UCL to Use					
231			95% A	pproximate (3amma UCL	108.2						
232												
233	١	Note: Sugge:	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	o select the	most appropri	iate 95% UCI	L.
234			F	Recommenda	itions are bas	sed upon dat	ta size, data d	distribution,	and skewne	ess.		
235					•				J	n, Maichle, an	, ,	
236	Ho	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for additio	nal insight t	he user may	want to cons	ult a statistic	ian.
237												

1	A B C	D E UCL Statis	F tics for Unce	G H ensored Full Data Sets	I J K	L
2						
3	User Selected Options	3				
4	Date/Time of Computation	ProUCL 5.12/28/2018 7:4	46:10 PM			
5	From File	5034.01 Organics, Refus	se Burner 0-2	2'.xls		
	Full Precision	OFF				
6	Confidence Coefficient	95%				
7	Number of Bootstrap Operations	2000				
8	rumber of Bookstap operations	2000				
9						
10	DRO					
11						
12			General	Statiatica		
13	Tata	I Nivershaw of Observations		Staustics	Number of Distinct Observations	20
14	Total	Number of Observations	20			-
15			0.4		Number of Missing Observations	0
16		Minimum	8.1		Mean	362.1
17		Maximum	1300		Median	285
18		SD	348		Std. Error of Mean	77.8
19		Coefficient of Variation	0.961		Skewness	1.064
20						
21			Normal (GOF Test		
22		Shapiro Wilk Test Statistic	0.886		Shapiro Wilk GOF Test	
23	5% S	hapiro Wilk Critical Value	0.905	Data	Not Normal at 5% Significance Level	
24		Lilliefors Test Statistic	0.154		Lilliefors GOF Test	
25	Ę	5% Lilliefors Critical Value	0.192	Data a	ppear Normal at 5% Significance Level	
26		Data appear Appr	oximate Nor	mal at 5% Significance	e Level	
27						
28		Ass	suming Norr	nal Distribution		
29	95% No	ormal UCL		95	5% UCLs (Adjusted for Skewness)	
30		95% Student's-t UCL	496.6		95% Adjusted-CLT UCL (Chen-1995)	509.9
31					95% Modified-t UCL (Johnson-1978)	499.7
32				<u> </u>		
33			Gamma	GOF Test		
34		A-D Test Statistic	0.605	And	derson-Darling Gamma GOF Test	
35		5% A-D Critical Value	0.783	Detected data app	pear Gamma Distributed at 5% Significan	ce Level
		K-S Test Statistic	0.138		nogorov-Smirnov Gamma GOF Test	
36		5% K-S Critical Value	0.202		pear Gamma Distributed at 5% Significan	ce Level
37		Detected data appear			·	
38		FF 2 -				
39			Gamma	Statistics		
40		k hat (MLE)	0.714	-	k star (bias corrected MLE)	0.64
41		Theta hat (MLE)	507.3		Theta star (bias corrected MLE)	565.7
42		nu hat (MLE)	28.55		nu star (bias corrected)	25.6
43	I.M	LE Mean (bias corrected)	362.1		MLE Sd (bias corrected)	452.6
44	IVI	moan (bido conceted)	002.1		Approximate Chi Square Value (0.05)	15.08
45	A din	sted Level of Significance	0.038		Adjusted Chi Square Value	14.44
46	Aujus	oted Level of Orginicance	0.000		Adjusted On Square value	17.77
47		٨٥٥	sumina Com	ma Distribution		
48	0E0/ Approximate 0				Adjusted Commo LICL (versidade a 50)	642.2
49	ээ% Арргохітате Gamma	a UCL (use when n>=50))	010	95%	Adjusted Gamma UCL (use when n<50)	642.2
50			1	COF Total		
51		N - MEN T - C		GOF Test	handar Milled and a 10077	
52	9	Shapiro Wilk Test Statistic	0.86	SI	hapiro Wilk Lognormal GOF Test	

53	Α	В	3		C 5% S	Shapir	D o Wilk	Critical '		F 0.905	Ŧ	G	H Data	Not L	l ognorn	nal at		J Signific	ance	K Level	L	
54						Li	lliefors	Test Sta	atistic	0.191				Lilli	efors L	.ogno	rmal (GOF T	est			
55					5	5% Lil	lliefors	Critical \	√alue	0.192			Data a	ppea	r Logno	rmal	at 5%	Signif	ficanc	ce Level	l	
56	-						Data	appear /	Appro:	ximate Logi	norm	nal at 5%	Significa	ance	Level						-	
57																						
58										Lognorma	al St	tatistics										
59						Minir	num of	Logged	Data	2.092							М	ean of	logge	ed Data	5.048	
60					ı	Maxir	num of	Logged	Data	7.17								SD of	logge	ed Data	1.705	
61											_											
62									Assı	uming Logn	orma	al Distribu	ution									
63								95% H									-		•	IE) UCL		
64							-	(MVUE)							97	'.5% (Cheby	/shev ((MVU	IE) UCL	2229	
65					99%	Cheb	oyshev	(MVUE)	UCL	3211												
66																						
67								•		etric Distribu												
68						Data	a appe	ar to folk	ow a [Discernible	Distr	ribution a	t 5% Sig	nifica	ince Le	vel						
69																						
70									•	rametric Dis	stribu	ution Free	UCLs									
71								95% CLT												ife UCL		
72								Bootstrap												p-t UCL		
73								Bootstrap							9	95% F	Percer	ntile Bo	otstr	ap UCL	493.3	
74								Bootstrap														
75							•	ean, Sd)										•		Sd) UCL		
76				97.	.5% Cł	nebys	shev(M	ean, Sd)	UCL	848					999	% Ch	ebysh	nev(Me	an, S	Sd) UCL	1136	
77																						
78										Suggested	1 UC	L to Use										
79							95% St	udent's-	UCL	496.6												
80																						
81										kimate (e.g.,												_
82		Whei	n appl	licable	e, it is s	sugge	ested to	o use a l	JCL b	ased upon	a dis	stribution	(e.g., ga	amma) passıı	ng bo	oth GC)F test	s in F	roucL		_
83		Note: C	·	-4:		م درا	h l		- OE0	/ LICL ====		:	من مطفضا	4-		مر ماد			-i-+- ()E0/ LIC	<u> </u>	
84		Note: 5	ugges	suons						% UCL are p								ppropr	late s	15% UC	L	_
85		Those		~ ~ ~ ~ ~						sed upon da ults of the si								hla an	-d I o	. (2006		_
86								•		Vorld data s										` '		_
87	'	iowever,	Silliui	lations	s resur	LS WII	i iiot cc	over all i	Near V	7011u uata s	CIS,	ioi additio	Jilai IIISI	giit tii	ie usei	illay	wanti	to cons	Suit a	Statistic	-iaii.	
88																						_
89	ORO																					4
90																						_
91										General	l Sta	ntistics										\dashv
92					Total	l Nun	nber of	Observa	ations						Nıı	ımber	of Die	stinct (Obser	rvations	19	\dashv
93					. 5.01						+									rvations		\dashv
94								Min	imum	13	+				. 101		***	9		Mean		\dashv
95									imum		+									Median		\dashv
96									SD		+							Std. F		of Mean		\dashv
97						Cc	efficie	nt of Var			+									ewness		\dashv
98																						\exists
99										Normal	GOI	F Test										\dashv
100					S	Shapi	ro Wilk	Test Sta	atistic		T				Shapir	o Wil	k GOF	F Test				\dashv
101								Critical \			+		Dat		t Norma					evel		\dashv
102								Test Sta			+						GOF 1	-				\dashv
103					5			Critical \			+		Dat	ta Not	t Norma				nce L	evel		\dashv
104											<u> — </u>						- "					

100 100	105	A B C D E Data Not	F Normal at 5	G H I J K L 5% Significance Level	
		Ass	suming Norr	rmal Distribution	
195		95% Normal UCL		95% UCLs (Adjusted for Skewness)	
111 112 113 114 115		95% Student's-t UCL	1681	95% Adjusted-CLT UCL (Chen-1995) 1744	
111 112 113 114 115				95% Modified-t UCL (Johnson-1978) 1695	
13					
115	112		Gamma (GOF Test	
15	113			-	
15	114	5% A-D Critical Value	0.796		
110	115				
198	116				
190	117	Detected data appear	Gamma Dis	istributed at 5% Significance Level	
190	118				
121	119	11.045			
122					
MLE Mean (bias corrected) 1617		` ,			
124		` '			
125		MLE Mean (bias corrected)	1107	` '	
Assuming Gamma Distribution		Adjusted Level of Significance	0.038		
127		Adjusted Level of Olgrinicance	0.000	Adjusted Offi Square Value 10.32	
226		Δοσ	suming Gam	mma Distribution	
129					
130		00% / pp. 00% nate damma 001 (doc mie. 11 00)	2110	2076 / Kajaciou dallillia 202 (acc illiciti 205) 2223	
131			Lognormal	al GOF Test	
132		Shapiro Wilk Test Statistic			
133		5% Shapiro Wilk Critical Value	0.905	Data Not Lognormal at 5% Significance Level	
134		Lilliefors Test Statistic	0.137	Lilliefors Lognormal GOF Test	
135		5% Lilliefors Critical Value	0.192	Data appear Lognormal at 5% Significance Level	
136		Data appear Approx	kimate Logn	normal at 5% Significance Level	
137					
139			Lognorma	al Statistics	
139 Maximum of Logged Data 8.434 SD of logged Data 1.915 140 141 Assuming Lognormal Distribution 142 95% H-UCL 15290 90% Chebyshev (MVUE) UCL 5145 143 95% Chebyshev (MVUE) UCL 6573 97.5% Chebyshev (MVUE) UCL 8554 144 99% Chebyshev (MVUE) UCL 12446 Interval 1246 Nonparametric Distribution Free UCL Statistics 147 Data appear to follow a Discernible Distribution at 5% Significance Level 148 148 149 Nonparametric Distribution Free UCLs 150 95% CLT UCL 1656 95% Jackknife UCL 1681 151 95% Standard Bootstrap UCL 1651 95% Bootstrap-t UCL 1812 152 95% Hall's Bootstrap UCL 1739 95% Percentile Bootstrap UCL 1692 153 95% BCA Bootstrap UCL 1782 95% Chebyshev(Mean, Sd) UCL <td rowsp<="" td=""><td>138</td><td></td><td>2.565</td><td>Mean of logged Data 5.977</td></td>	<td>138</td> <td></td> <td>2.565</td> <td>Mean of logged Data 5.977</td>	138		2.565	Mean of logged Data 5.977
141 Assuming Lognormal Distribution 142 95% H-UCL 15290 90% Chebyshev (MVUE) UCL 5145 143 95% Chebyshev (MVUE) UCL 6573 97.5% Chebyshev (MVUE) UCL 8554 144 99% Chebyshev (MVUE) UCL 12446		Maximum of Logged Data	8.434	SD of logged Data 1.915	
142 95% H-UCL 15290 90% Chebyshev (MVUE) UCL 5145 143	140				
142 95% Chebyshev (MVUE) UCL 6573 97.5% Chebyshev (MVUE) UCL 8554 144 99% Chebyshev (MVUE) UCL 12446 145 Nonparametric Distribution Free UCL Statistics 147 Data appear to follow a Discernible Distribution at 5% Significance Level 148 Nonparametric Distribution Free UCLs 150 95% CLT UCL 1656 95% Jackknife UCL 1681 151 95% Standard Bootstrap UCL 1651 95% Bootstrap-t UCL 1812 152 95% Hall's Bootstrap UCL 1739 95% Percentile Bootstrap UCL 1692 153 95% BCA Bootstrap UCL 1782 154 90% Chebyshev(Mean, Sd) UCL 2059 95% Chebyshev(Mean, Sd) UCL 2464 155 97.5% Chebyshev(Mean, Sd) UCL 3025 99% Chebyshev(Mean, Sd) UCL 4127	141				
144 99% Chebyshev (MVUE) UCL 12446 145 Nonparametric Distribution Free UCL Statistics 147 Data appear to follow a Discernible Distribution at 5% Significance Level 148 Nonparametric Distribution Free UCLs 150 95% CLT UCL 1656 95% Jackknife UCL 1681 151 95% Standard Bootstrap UCL 1651 95% Bootstrap-t UCL 1812 152 95% Hall's Bootstrap UCL 1739 95% Percentile Bootstrap UCL 1692 153 95% BCA Bootstrap UCL 1782 154 90% Chebyshev(Mean, Sd) UCL 2059 95% Chebyshev(Mean, Sd) UCL 2464 155 97.5% Chebyshev(Mean, Sd) UCL 3025 99% Chebyshev(Mean, Sd) UCL 4127	142				
144	143	• • • • •		97.5% Chebyshev (MVUE) UCL 8554	
Nonparametric Distribution Free UCL Statistics 147 Data appear to follow a Discernible Distribution at 5% Significance Level 148 Nonparametric Distribution Free UCLs 149 Nonparametric Distribution Free UCLs 150 95% CLT UCL 1656 95% Jackknife UCL 1681 151 95% Standard Bootstrap UCL 1651 95% Bootstrap-t UCL 1812 152 95% Hall's Bootstrap UCL 1739 95% Percentile Bootstrap UCL 1692 153 95% BCA Bootstrap UCL 1782 154 90% Chebyshev(Mean, Sd) UCL 2059 95% Chebyshev(Mean, Sd) UCL 2464 155 97.5% Chebyshev(Mean, Sd) UCL 3025 99% Chebyshev(Mean, Sd) UCL 4127	144	99% Chebyshev (MVUE) UCL	12446		
Data appear to follow a Discernible Distribution at 5% Significance Level Nonparametric Distribution Free UCLs Nonparametric Distribution Free UCLs 150 Nonparametric Distribution Free UCLs 150 95% CLT UCL 1656 95% Jackknife UCL 1681 151 95% Standard Bootstrap UCL 1651 95% Bootstrap-t UCL 1812 152 95% Hall's Bootstrap UCL 1739 95% Percentile Bootstrap UCL 1692 153 95% BCA Bootstrap UCL 1782 154 90% Chebyshev(Mean, Sd) UCL 2059 95% Chebyshev(Mean, Sd) UCL 2464 155 97.5% Chebyshev(Mean, Sd) UCL 3025 99% Chebyshev(Mean, Sd) UCL 4127	145		ed Broom	dia Fore HOL Ordinia	
Nonparametric Distribution Free UCLs Nonparametric Distribution Free UCLs 150 95% CLT UCL 1656 95% Jackknife UCL 1681 151 95% Standard Bootstrap UCL 1651 95% Bootstrap-t UCL 1812 152 95% Hall's Bootstrap UCL 1739 95% Percentile Bootstrap UCL 1692 153 95% BCA Bootstrap UCL 1782 154 90% Chebyshev(Mean, Sd) UCL 2059 95% Chebyshev(Mean, Sd) UCL 2464 155 97.5% Chebyshev(Mean, Sd) UCL 3025 99% Chebyshev(Mean, Sd) UCL 4127		·			
Nonparametric Distribution Free UCLs 150 95% CLT UCL 1656 95% Jackknife UCL 1681 151 95% Standard Bootstrap UCL 1651 95% Bootstrap-t UCL 1812 152 95% Hall's Bootstrap UCL 1739 95% Percentile Bootstrap UCL 1692 153 95% BCA Bootstrap UCL 1782 154 90% Chebyshev(Mean, Sd) UCL 2059 95% Chebyshev(Mean, Sd) UCL 2464 155 97.5% Chebyshev(Mean, Sd) UCL 3025 99% Chebyshev(Mean, Sd) UCL 4127 1681	147	Data appear to follow a D	uscernible D	DISTRIBUTION At 5% Significance Level	
150 95% CLT UCL 1656 95% Jackknife UCL 1681 151 95% Standard Bootstrap UCL 1651 95% Bootstrap-t UCL 1812 152 95% Hall's Bootstrap UCL 1739 95% Percentile Bootstrap UCL 1692 153 95% BCA Bootstrap UCL 1782 154 90% Chebyshev(Mean, Sd) UCL 2059 95% Chebyshev(Mean, Sd) UCL 2464 155 97.5% Chebyshev(Mean, Sd) UCL 3025 99% Chebyshev(Mean, Sd) UCL 4127		N	omotile Di-	etribution Eros IICI o	
150 95% Standard Bootstrap UCL 1651 95% Bootstrap-t UCL 1812 152 95% Hall's Bootstrap UCL 1739 95% Percentile Bootstrap UCL 1692 153 95% BCA Bootstrap UCL 1782 154 90% Chebyshev(Mean, Sd) UCL 2059 95% Chebyshev(Mean, Sd) UCL 2464 155 97.5% Chebyshev(Mean, Sd) UCL 3025 99% Chebyshev(Mean, Sd) UCL 4127					
151 95% Hall's Bootstrap UCL 1739 95% Percentile Bootstrap UCL 1692 153 95% BCA Bootstrap UCL 1782 154 90% Chebyshev(Mean, Sd) UCL 2059 95% Chebyshev(Mean, Sd) UCL 2464 155 97.5% Chebyshev(Mean, Sd) UCL 3025 99% Chebyshev(Mean, Sd) UCL 4127					
152 95% BCA Bootstrap UCL 1782 154 90% Chebyshev(Mean, Sd) UCL 2059 95% Chebyshev(Mean, Sd) UCL 2464 155 97.5% Chebyshev(Mean, Sd) UCL 3025 99% Chebyshev(Mean, Sd) UCL 4127				·	
154 90% Chebyshev(Mean, Sd) UCL 2059 95% Chebyshev(Mean, Sd) UCL 2464 155 97.5% Chebyshev(Mean, Sd) UCL 3025 99% Chebyshev(Mean, Sd) UCL 4127		·		95% Percentile Bootstrap OCL 1692	
155 97.5% Chebyshev(Mean, Sd) UCL 3025 99% Chebyshev(Mean, Sd) UCL 4127		·		95% Chehychey/Mean Sd\ LICL 2464	
		37.370 Gliebyshev(iviedii, 30) UCL	0020	33 /0 Gliebyshev(ivicali, Su) OCL 4127	
[156]	156				

157	Α		В		С		D	E		F Suggested	G UCL to Use		Н		1		J	工	K		L
158					95	5% Ad	justed	Gamma	UCL	2226											
159							-														
160		Not	e: Sug	gestion	ns regard	ding th	ne sele	ction of a	a 95%	% UCL are p	rovided to he	elp the	e user	to sel	ect the i	most a	approp	riate	95% l	JCL.	
161						Recon	nmend	ations ar	e ba	sed upon da	ta size, data	distri	bution	, and	skewne	SS.					
		Th	ese red	comme						ults of the sin							chle, a	nd Le	e (200	06).	
162										Vorld data se											n.
163															, , , , ,						
164																				—	
165	TEQ																				
100																					
167										General	Statistics										
168					Tota	ıl Num	her of (Observa	tions		Clausics				Numbe	r of D	istinct	Ohse	nyatio	ne	34
169					TOLA	ii ivuiii	Dei Oi V		110115	34					Numbe						0
170								Mini		0.59					Numbe	I OI IVI	issing	Obse			64.25
171								Minir											Mea		
172								Maxir									0.1		Media		49.75
173									SD								Std.		of Mea		10.08
174						Co	efficien	nt of Varia	ation	0.915								Sk	kewne	SS	0.958
175																					
176											GOF Test										
177						•		Test Sta							piro Wi						
178					5% S	Shapiro	o Wilk (Critical V	'alue	0.933		[Data N		rmal at		-	ance l	_evel		
179						Lil	liefors	Test Sta	tistic	0.157				L	illiefors	GOF	Test				
180					5	5% Lill	liefors (Critical V	'alue	0.15		[Data N	lot No	rmal at	5% Si	ignifica	ance I	_evel		
181								Data	a Not	Normal at 5	% Significar	nce Le	evel								
182																					
183									As	suming Norr	mal Distribut	ion									
184					95% N	ormal	UCL						959	% UCL	.s (Adju	sted f	or Ske	wnes	s)		
185						9	5% Stu	udent's-t	UCL	81.31				95%	Adjuste	ed-CL	T UCL	_ (Che	n-199	5)	82.6
186														95%	6 Modifi	ed-t L	JCL (J	ohnsc	n-197	(8)	81.58
187										1	1										
188										Gamma	GOF Test										
189							A-D	Test Sta	tistic	0.265			Ande	erson-	Darling	Gamı	ma GC)F Te	st		
190						5%	% A-D (Critical V	′alue	0.78	Detecte	d dat	а арре	ear Ga	ımma D	istribu	uted at	5% 5	Signific	anc	e Level
191							K-S	Test Sta	tistic	0.0806			Kolmo	gorov	-Smirno	v Gar	mma C	30F 1	est		
						59	% K-S (Critical V	/alue	0.156	Detecte	d dat	а арре	ear Ga	ımma D	istribu	uted at	5% 5	Signific	canc	e Level
192						D	etected	data ar	pear	⊥ r Gamma Dis											
193													-								
194										Gamma	Statistics										
195								k hat (N	MLE)						k	star (I	bias co	orrect	ed ML	E)	0.853
196							The	eta hat (N							Theta	•				1	75.36
197								nu hat (N											orrecte		57.98
198					I A	11 = 1/4		as correc											orrecte	- 1	69.58
199					171	IVIC	curi (Di	20 001160	J.Cu)	54.25				Ann	oximate		,				41.47
200					۸۵۰۰۰	ictod I	aval a	f Significa	anco	0.0422				∼hhi					re Valı		40.78
201					Auju	oleu L	.evei Ol	Significa	ance	0.0422					A	ujusie	u UIII	oqua	e vall	76	40.70
202											ma Distrib	lia									
203		2=-	/ ^		- 0					suming Gam	ıma Distribu		050/ -	\ _I'	-1.0		OL ′			-0,	01.01
204		95%	% Appro	oximat	e Gamm	na UC	L (use	when n>	=50)	89.82			95% A	Adjuste	ed Gam	ma U	CL (us	e whe	en n<5	ıU)	91.34
205																					
206											GOF Test										
207								Test Sta						•	Vilk Log						
208					5% S	Shapiro	o Wilk (Critical V	'alue	0.933		Da	ata No	t Logr	ormal a	at 5%	Signifi	cance	e Leve	I	

	Α	В	С	D		E	F	G	Н				J		K	L	
209				Lilliefors	Test S	Statistic	0.129						rmal GOF				
210			5	% Lilliefors (0.15				_	ormal	at 5% Sigr	nificar	nce Level	1	
211				Data a	appea	r Appro	ximate Logn	ormal at 5%	Significar	nce l	Level						
212																	
213							Lognorma	I Statistics									
214				Minimum of										_	ged Data		
215			N	Maximum of	Logge	ed Data	5.303						SD	of log	ged Data	1.4	12
216																	
217						Assı	ıming Logno	rmal Distribu	ition								
218						H-UCL	191.8						Chebyshev		-		
219				Chebyshev	•	•	202.8				9	7.5% (Chebyshev	ı (MV	UE) UCL	. 252.8	3
220			99%	Chebyshev	(MVUI	E) UCL	351.2										
221																	
222						•		ion Free UCI									
223				Data appea	ar to fo	ollow a [Discernible D	Distribution at	:5% Sign	ifica	nce Lo	evel					
224																	
225								ribution Free	UCLs								
226						LT UCL	80.83								nife UCL		
227				Standard Bo		•	80.75								ap-t UCL	. 83.4	
228				95% Hall's Bo		•	82.73					95% F	Percentile E	3oots	trap UCL	. 80.7	′ 4
229				95% BCA B		•	82.94										
230				nebyshev(Me		,	94.49						ebyshev(N		,	. 108.2	
231			97.5% Ch	nebyshev(Me	ean, S	d) UCL	127.2				99	3% Ch	ebyshev(N	lean,	Sd) UCL	. 164.5	j
232																	
233							Suggested	UCL to Use									
234			95	% Adjusted	Gamn	na UCL	91.34										
235																	
236		lote: Sugge	estions regard	ling the sele	ction	of a 95%	6 UCL are pr	ovided to he	lp the use	er to	selec	t the m	nost appro	priate	95% UC	;L.	
237			F	Recommend	ations	are bas	sed upon dat	ta size, data (distributio	on, a	ind sk	ewnes	SS.				
238		These recor	mmendations	are based	upon 1	the resu	ılts of the sim	nulation studi	ies summ	nariz	ed in S	Singh,	Maichle, a	and Le	ee (2006)).	
239	Ho	wever, simu	ulations result	s will not co	ver all	Real W	/orld data se	ts; for addition	nal insigl	ht th	e user	r may	want to cor	nsult a	a statistic	cian.	
240																	

	A B	С	D	E UCL Statist	F tics for Data	G Sets with Non	H n-Detects	1	J	K	L
1											
2	User Select	ted Options	3								
3	Date/Time of Cor		ProUCL 5.13	/4/2018 10:	51:14 AM						
4 5		From File	WorkSheet.x								
		Precision	OFF								
6	Confidence C		95%								
7 8	Number of Bootstrap O	perations	2000								
9	<u> </u>	<u>. </u>									
	GW Pb										
10											
11 12					General	Statistics					
		Total	Number of Ol	oservations	14			Numbe	er of Distinct	Observations	12
13			Number	of Detects	12				Number o	f Non-Detects	2
14		N	umber of Disti	nct Detects	11			Numb	er of Distinc	t Non-Detects	
15				num Detect						m Non-Detect	
16				num Detect	0.19					m Non-Detect	
17				ice Detects	0.00245					t Non-Detects	14.29%
18				an Detects	0.0407				. 5.5511	SD Detects	0.0495
19				ian Detects	0.023					CV Detects	1.217
20				ess Detects	2.942				Kıı	rtosis Detects	9.11
21			Mean of Logg		-3.556					gged Detects	
22				,04 2 010010						9904 2010010	
23				Norm	al GOF Test	on Detects O	nlv				
24		S	Shapiro Wilk Te		0.564			Shapiro W	ilk GOF Tes	•	
25			hapiro Wilk Cr		0.859	D	etected Da			nificance Leve	el
26			Lilliefors Te		0.323				GOF Test		
27		5	5% Lilliefors Cr		0.243	De	etected Da			nificance Leve	əl
28						at 5% Signific					
29 30											
31		Kaplan-	Meier (KM) St	atistics usin	g Normal Cr	tical Values a	nd other No	onparametr	ic UCLs		
32		•		KM Mean	0.0356					Error of Mean	0.0127
33				KM SD	0.0456				95% K	M (BCA) UCL	0.0598
			95%	KM (t) UCL	0.0581			95% KM (ootstrap) UCL	
34 35				KM (z) UCL	0.0565					otstrap t UCL	
36		•	90% KM Cheb	` '	0.0738					ebyshev UCL	0.0911
35			.5% KM Cheb	•	0.115					ebyshev UCL	0.162
38						<u> </u>					
39			Ga	mma GOF	Tests on De	tected Observ	ations Only	y			
40			A-D Te	est Statistic	1.245		A	nderson-Da	arling GOF T	est	
41			5% A-D Cr	itical Value	0.745	Detecte			-	5% Significand	e Level
42			K-S Te	est Statistic	0.278		ı	Kolmogorov	-Smirnov GC)F	
43			5% K-S Cr	itical Value	0.249	Detecte	d Data Not	Gamma Di	stributed at 5	5% Significand	e Level
44			Detected	Data Not G	amma Distr	ibuted at 5% S	Significance	e Level			
45											
46				Gamma	Statistics on	Detected Dat	a Only				
47			ŀ	k hat (MLE)	1.56			k	star (bias co	orrected MLE)	1.225
48				a hat (MLE)	0.0261			Theta	star (bias co	orrected MLE)	0.0332
49			nı	ı hat (MLE)	37.44				nu star (b	ias corrected)	29.41
50				in (detects)	0.0407				•	<u> </u>	
51				•							
52			Ga	amma ROS	Statistics us	ing Imputed N	lon-Detects	3			
IJΖ											

53	Α		В	GF	C ROS	may ı		D e use	d wh	E nen da	ıta se	F et has		 % NI	G Os wit	h ma	H ny tied	obse	ervati	l ions a	at mu	ل ultipl	e DLs		K		L	
54		GF	ROS may	y no	t be ı	used	wher	n kstar	r of c	detect	s is s	small s	uch a	as <	.0, es	specia	ally wh	en th	e sai	mple	size	is sı	mall (e	e.g.,	<15-2	20)		-
55			<u> </u>	-		For	such	n situa	tion	s, GR	OS r	nethod	l may	yiel	d inco	rrect	value	s of U	CLs	and	BTV	s	,					
56									This	is es	pecia	ally tru	e whe	en th	e san	nple s	size is	small										
57			For gan	mma	dist	ribute	ed de	tectec	d dat	ta, BT	Vs a	nd UC	Ls ma	ay b	e com	pute	d usin	g gam	ıma (distril	butio	n on	KM e	estim	nates			-
58										Minim	num	0.0	1												Me	an	0.0363	3
59									ı	Maxim	num	0.1	9												Medi	an	0.021	=
60											SD	0.0	469												(CV	1.291	=
61									k ł	nat (M	LE)	1.4	27							ŀ	k sta	r (bia	as cor	rect	ed ML	.E)	1.169	
62								The	eta l	nat (M	LE)	0.0	254							Theta	a sta	r (bia	as cor	rect	ed ML	.E)	0.031	=
63									nu l	nat (M	LE)	39.	97								n	ıu sta	ar (bia	as co	orrecte	ed)	32.74	=
64	-				Adju	sted I	Leve	l of Si	gnifi	cance	(β)	0.0	312															
65			App	oroxi	mate	Chi	Squa	are Va	alue	(32.74	Ι, α)	20.	66					Α	djus	ted C	chi S	quar	e Val	ue (3	32.74,	β)	19.39	
66		95%	Gamma	а Ар	prox	imate	UCL	_ (use	whe	en n>=	50)	0.0	575				95%	6 Gan	nma	Adju	sted	UCL	_ (use	whe	en n<	50)	0.0613	3
67																												
68								Е	stim	ates o	of Ga	amma	Parar	mete	rs usi	ng K	M Esti	mates	3									
69									М	ean (ł	(M)	0.0	356											;	SD (K	M)	0.0456	;
70								V	/aria	nce (ł	(M)	0.00	208										SE o	f Me	an (K	M)	0.0127	7
71									k	hat (ł	(M)	0.6	609											k s	tar (K	M)	0.526	
72									nu	hat (ł	(M)	17.	04											nu s	tar (K	M)	14.72	
73								tl	heta	hat (ł	(M)	0.0	585										the	eta s	tar (K	M)	0.0677	7
74						80%	gam	ma pe	erce	ntile (l	KM)	0.0	585							90)% g	amn	na pei	rcen	tile (K	M)	0.0952	2
75						95%	gam	ma pe	erce	ntile (l	KM)	0.1	34							99	9% g	amn	na pei	rcen	tile (K	M)	0.23	
76																												
77										Ga	mma	a Kapl	an-M	eier	(KM)	Statis	stics											
78			App	oroxi	mate	Chi	Squa	are Va	alue	(14.72	2, α)	7.0	68					Α	djus	ted C	chi S	quar	e Val	ue (14.72,	β)	6.376	
79	95	% Gar	nma App	prox	imat	e KM	-UCI	_ (use	whe	en n>=	=50)	0.0	741			9	5% Ga	ımma	Adjı	usted	KM-	-UCI	_ (use	whe	en n<	50)	0.0821	i
80														-														
81								L	_ogn	ormal	GOI	F Test	on D	etec	ted O	bser	ations/	Only	,									
82						Sh	apiro	Wilk	Tes	t Stati	stic	0.8	841					(Shap	oiro V	Vilk C	GOF	Test			-		
83					5	% Sh	apiro	Wilk	Criti	cal Va	alue	8.0	59			Dete	ected [Data N	Not L	.ogno	rmal	l at 5	% Sig	gnific	cance	Leve	el	
84							Lill	iefors	Tes	t Stati	stic	0.2	237						Lill	liefor	s GC)F T	est					
85						5%	6 Lilli	efors	Criti	cal Va	alue	0.2	243)etec	ted Da	ita ap	pear	Logr	norm	al at	5% 5	Signi	ificanc	e Le	vel	
86							Dete	cted D	Data	appe	ar Ap	pproxir	nate	Logi	norma	l at 5	% Sig	nificar	nce l	Level								
87																												
88								Le	ogno	ormal	ROS	Statis	tics l	Jsin	g Impi	uted	Non-D	etects	3									
89							Mea	an in C	Origi	nal So	cale	0.0	356									N	Mean	in Lo	og Sca	ale	-3.799	
90							S	D in C	Origi	nal Sc	cale	0.0	473										SD	in Lo	og Sca	ale	0.931	
91			95% t L	JCL	(ass	umes	nori	mality	of F	ROS d	ata)	0.0	58							95%	6 Per				rap U		0.0578	3
92								BCA B				0.0	678									959	% Boo	otstra	ap t U	CL	0.113	
93							95%	H-UC	CL (L	og R	OS)	0.0	69															
94																												
95					S	tatisti	ics u	sing K	(M e	stimat	tes o	n Logg	ged D	ata	and A	ssun	ning Lo	gnorr	mal [Distril	butio	n						
96								KM N				-3.8	05												ео Ме		0.0223	3
97										(logg	- 1	0.9								95%				•	KM-Lo	•	2.637	
98				ΚN	1 Sta	ndard	Erro	or of N				0.2												•	KM -Lo		0.0649	
99										(logg		0.9	04							95%	Crit	tical	H Val	ue (l	KM-Lo)g)	2.637	
100				ΚN	1 Sta	ndard	d Err	or of N	Лear	ı (logg	ged)	0.2	252															
101																												
102												D	L/2 S	tatis	tics													
103					D	L/2 N													DL/2	2 Log-	-Trar							
104							Mea	an in C	Origi	nal So	cale	0.0	352									N	Mean	in Lo	og Sca	ale	-3.904	
														1														—

	Α		В		С			D SD in (Origina	E Il Scale	2	F 0.0476	(3		Н					J SD	in Log	K Scale	L 1.123
105					95%	t UC				rmality		0.0577										H-Sta		0.0965
106											1	od, provid	led for	comps	ariso	ne and	d hiet	orical r	-28G	ons	0070	711 010	II OOL	
107						2 10		u 1000		iaca iii	iou i	ou, provid	100 101	compe	ai 1001	io di i	a 1110t	onoan	000	0110				
108									Non	naram	etric	c Distribut	tion Fr	a IICI	l Sta	tietice								
109					De	tect	od F)ata a				ate Logno						ficance	ם ו ב	vel				
110						, CC	.cu L	Jala a	ppear	Applo	AIIIIC	ate Logito	illiai D	istribu	ileu c	11 3 70	Olgili	iicarice	Le	VCI				
111											91	uggested	LICL #	Llee										
112									ΚM	H-UCL		0.0649	UCL II) USE										
113									IXIVI	11-001	_	0.0043												
114		Note	. Cuaa	anting		ardin	+b	0 0010	otion	of a OE	0/ 1	JCL are p	rovido	l to bo	اط حال		· to o	loot th		oot o	nnranr	ista OE	50/ LICI	
115		NOLE	e. Sugg	estioi	is rega							d upon da									ppropr	iale 90	5% UCI	
116		TL										-									hla a.a	41	(2006)	
117									•			of the sir							-				,	
118	F	Howe\	er, sım	iulatio	ns res	ults	WIII	not co	ver all	Real \	vvor	ld data se	ets; for	additic	onai i	nsign	t tne	user m	ay v	vant 1	o cons	suit a s	tatistici	an.
119																								
120	OM: == =																							
121	GW TEQ																							
122																								
123											,	General	Statist	ics										
124					Tot	tal N	lumb	per of	Obser	vations	S	14										Observ		14
125																		Num	ber (of Mi	ssing (Observ		0
126									М	inimun		0.168											Mean	18.36
127									Ma	aximun	ı .	130										N	1edian	3.76
128										SE)	35.01									Std. E	rror of	Mean	9.356
129							Coe	efficier	nt of V	ariatior	า	1.906										Ske	wness	2.894
130											•													
131												Normal (GOF T	est										
132							•			Statistic		0.578					SI	napiro	Wilk	GOI	- Test			
133					5%	Sha	apiro	Wilk	Critica	l Value	Э	0.874				Data I	Not N	ormal	at 5	% Sig	gnificar	nce Le	vel	
134							Lill	iefors	Test S	Statistic	С	0.312						Lilliefo	rs G	OF 1	Γest			
135						5%	Lilli	efors	Critica	l Value	Э	0.226			ı	Data I	Not N	ormal	at 5	% Sig	gnificar	nce Le	vel	
136									D	ata No	t No	ormal at 5	% Sig	nifican	ce Le	evel								
137																								
138										A	ssui	ming Nori	nal Dis	tributi	on									
139					95%	Norr	mal l	UCL								95	% UC	CLs (Ad	djust	ted fo	r Skev	vness)		
140							95	5% Stu	udent's	s-t UCI	L	34.93					95	% Adju	isted	d-CL7	T UCL	(Chen-	-1995)	41.49
141																	95	% Mo	difie	d-t U	CL (Jo	hnson-	-1978)	36.14
142											-1		1											
143												Gamma	GOF T	est										
144								A-D	Test S	Statistic	С	0.428				And	erso	n-Darli	ng G	amn	na GOI	F Test		
145							5%	A-D	Critica	l Value	Э	0.813	D	etected	d dat	а арр	ear C	amma	a Dis	stribu	ted at §	5% Sig	nifican	ce Level
146								K-S	Test S	Statistic	С	0.161				Kolmo	ogoro	v-Smii	rnov	Gan	ıma G	OF Tes	st	
147							5%	6 K-S	Critica	l Value	Э	0.245	D	etected	d dat	а арр	ear C	amma	a Dis	stribu	ted at 5	5% Sig	nifican	ce Level
148							De	etecte	d data	appea	ır Ga	amma Dis	tribute	d at 5°	% Si	gnifica	ance	Level						
149																								
150												Gamma	Statist	ics										
151									k ha	t (MLE)	0.4							k st	tar (b	ias cor	rected	MLE)	0.362
								The		t (MLE		45.87						The		•		rected		50.7
152										t (MLE	_	11.21								•		as corre	,	10.14
153						MLE	E Me			rected	^	18.36							ı		•	as corre	,	30.51
154								(3.			<u> </u>						αA	oroxim			•	Value	*	4.031
155					Adi	iuste	ed I é	evel o	f Siani	ficance	е	0.0312					٠.٣				•	Square	, ,	3.534
156						,			9.11											,	. J U	-, 33.0	. 2.40	

	Α		В		С		D		E	F	G		Н				J		K		L
157																					
158										ssuming Ga	mma Distri	ibuti									
159		95%	Approx	cimate	e Gam	ma U	CL (use	e whe	n n>=50) 46.21			95%	Adju	sted Ga	mma	UCL (use wh	hen n<50	0)	52.7
160																					
161											al GOF Te	st									
162									t Statistic						o Wilk L						
163					5%				cal Value				Data app		•			_		el	
164									t Statistic						fors Log						
165						5% L	illiefors		cal Value				Data app		Lognorn	nal at	5% Si	gnifica	nce Lev	el	
166								Dat	ta appea	r Lognorma	al at 5% Sig	nific	cance Lev	/el							
167																					
168											nal Statistic	S									
169									ged Data										gged Dat		1.267
170						Max	imum o	f Log	ged Data	4.868							SE	of log	gged Dat	ta	2.114
171																					
172										uming Logi	normal Dist	tribu	ition								
173									% H-UCL								•	,	/UE) UC		65.91
174							•	`	UE) UCL						97.5	% Ch	ebysh	ev (MV	/UE) UC	;L	112.7
175					99%	6 Che	ebyshev	/ (MV	UE) UCL	166											
176																					
177									•	etric Distrib											
178						Da	ta appe	ear to	follow a	Discernible	Distributio	n at	5% Sign	ifican	ce Leve	l					
179																					
180										rametric Di	istribution F	ree	UCLs								
181									CLT UCL										knife UC		34.93
182					95				trap UCL										rap-t UC		72.32
183									trap UCL						959	% Pe	rcentile	Boots	strap UC	;L	34.38
184									trap UCL												
185					90% (Cheby	/shev(N	lean,	Sd) UCL	46.43							•	`	, Sd) UC		59.15
186				9	7.5% (Cheby	/shev(N	lean,	Sd) UCL	76.79					99%	Cheb	yshev	Mean	, Sd) UC	;L	111.5
187																					
188										Suggeste	d UCL to U	lse									
189				· <u></u>	9	5% A	djusted	d Gan	nma UCL	52.7											
190				· <u></u>																	
191		Note	e: Sugge	estion	is rega	rding	the sel	ection	of a 95°	% UCL are	provided to	he	lp the use	er to s	select th	e mo	st appr	opriate	95% U	CL.	
192						Reco	ommen	dation	ns are ba	sed upon d	lata size, da	ata	distributio	n, ar	nd skewi	ness.					
193		The	ese reco	mme	endatio	ns ar	e based	upo	n the res	ults of the s	simulation s	studi	ies summ	arize	d in Sin	gh, M	laichle	, and L	.ee (200	6).	
194	H	Howev	er, simu	ulatio	ns resi	ults w	ill not c	over a	all Real V	Norld data	sets; for ad	ditic	nal insigl	nt the	user m	ay wa	ant to c	onsult	a statist	ticiar	١.
195																					

	Α	В	С	D	E	F	G	Н	1	J	K	L
1					Outlier Tests	s for Selecte	d Variables e	excluding nor	ndetects			
2			User Select	ted Options								
3	Dat	e/Time of Co	mputation	ProUCL 5.12	2/28/2018 10):14:49 AM						
4				From File	WorkSheet.:	xls						
5			Full	Precision	OFF							
6												
7												
8			Rosner's O	utlier Test for	· 1 Outliers ir	n As culled						
9												
10												
11			Total N	58								
12			lumber NDs	24								
13			ber Detects	34								
14			n of Detects	2.549								
15			of Detects	0.871								
16			nber of data	34								
17		er of suspec		1								
18	NDs not in	ncluded in the	e following:									
19												
20				Potential	Obs.	Test		Critical				
21	#		sd	outlier	Number		value (5%)					
22	1	2.549	0.858	0.97	31	1.841	2.97	3.3				
23												
24	For 5% Sign	ificance Lev	el, there is no	o Potential O	utlier			1			1	
25												
26	For 1% Sign	ificance Lev	el, there is no	o Potential O	utlier							
27												

Ch D Ch	A. D.	As Do	D. D.	D.a.	D. D.	C4	ם כז	C **	D C**	Ca	D C-	C.,	D. C.:	Dh	D Db	140	D. Ma	NI:	D. NI	Ç.	D. Co.	Λ	D 4=	TI	D. TI		D. V	7	D 7=	
Sb D_Sb	As D ₁	_As Ba O	D_Ba 63	ве 1	D_Be	Cd 0	D_Cd	Cr 0	D_Cr 10	Co 1	D_Co 2.7	Cu 1	D_Cu 11	1	D_Pb 7.5	Mo 1	D_Mo	0	D_Ni 12	5e 1	D_Se	Αg	D_Ag	0	D-Tl 1	0	D_V 21	Zn 1	D_Zn 19	Hg D_Hg 1 0.1 0
2	0 1	0	39	1	1	0	1	0	7.6	1	1.7	1	6	1	2.6	1	1	0	9.3	1	1	0	1	0	1	0	8.9		10	1 0.1 0
2	0 1.2	1	270	1	1	0	1	0	8.5	1	1.4	1	34	1	9.3	1	1	0	11	1	1	0	1	0	1	0	9.8		56	1 0.1 0
2	0 1.9	1	320	1	1	0	1	0	24	1	4	1	30	1	13	1	1	0	38	1	1	0	1	0	1	0	15		45	1 0.1 0
2	0 3.1	1	380	1	1	0	1	0	25	1	3.3	1	44	1	15	1	1	0	29	1	1	0	1	0	1	0	11		98	1 0.1 0
2	0 2.2	1	100	1	1	0	1	0	11	1	3	1	17	1	6.5	1	1	0	12	1	1	0	1	0	1	0	31		20	1 0.1 0
2	0 1	0	30	1	1	0	1	0	4.9	1	1.5	1	5.9	1	2.9	1	1	0	6.2	1	1	0	1	0	1	0	8.5		9.9	1 0.1 0
2	0 1	0	5.5	1	1	0	1	0	1	0	1	0	2	0	1	0	1	0	1	0	1	0	1	0	1	0	1		4.3	1 0.1 0
2	0 2.5	1	610	1	1	0	1	0	30	1	5.3	1	49	1	25	1	1	0	46	1	1	0	1	0	1	0	24	1	97	1 0.1 0
2	0 1	0	34	1	1	0	1	0	3.3	1	1.4	1	4.2	1	1.2	1	1	0	3.1	1	1	0	1	0	1	0	8.4	1	8.3	1 0.1 0
2	0 1	0	43	1	1	0	1	0	5.8	1	2.1	1	9.3	1	2.9	1	1	0	4.9	1	1	0	1	0	1	0	19	1	15	1 0.1 0
2	0 1	0	40	1	1	0	1	0	7	1	2.1	1	7.6	1	2.8	1	1	0	5.3	1	2.3	1	1	0	1	0	17	1	14	1 0.1 0
2	0 3.2	1	180	1	1	0	1	0	19	1	5.2	1	39	1	5.8	1	1	0	24	1	1	0	1	0	1	0	48	1	24	1 0.1 0
2	0 3.9	1	210	1	1	0	1	0	27	1	7.2	1	18	1	7.7	1	1	0	25	1	1	0	1	0	1	0	68	1	26	1 0.1 0
2	0 3.4	1	180	1	1	0	1	0	29	1	6.4	1	16	1	5.9	1	1	0	26	1	1	0	1	0	1	0	69	1	24	1 0.1 0
7	0 1.2	0	18.3		0.21	0	0.58	0	5.2	1	1.6	1	11.4	1	2.4	1			9	1	4.1	0	1.2	0	2.9	0	29		1.8	1 0.072 0
8.8	0 2.2	1	112		1.2	1	0.29	1	35.1	1	7.2	1	40.4	1	9.1	1			35		5.1	0	1.5		3.7		80.1		9.8	1 0.15 0
_	0 1	1	46.6		0.57	0	0.21	1	22.2	1	2.5	1	19.1	1	2.7	1			12.7		4.7	0	1.3		3.3				1.1	1 0.13 0
7.9	0 2.3	1	117		0.71	0	0.26	1	22.1	1	4	1	27.9	1	34.4	1			20.2		4.6	0	1.3	0	3.3		54.8		5.6	1 0.16 1
8.3	0 3.2	1	416	1 (0.97	0	0.32	1	32.1	1	6.5	1	30.7	1	8.4	1			26.7		4.8	0	1.4	0	3.5		70.3		8.9	1 0.14 0
8.3	0 2.7	1	117	1	1	0	0.35	1	39.8	1	4.1	1	26.8	1	7.5	1			33		4.9	0	1.4	0	3.5		73.3		3.2	1 0.12 1
7	0 0.6	0	27.7		0.18	0	0.2	1	6.5	1	1.8	1	16.5	1	25.6	1			10.6		4.1	0	1.2	0	2.9		21.6		1.8	1 0.04 1
	0 1.1	0	12		0.09	0	0.57	0	28.4	1	17.3	1	82.6	1	2.2	1			89.8	1	4	0	1.1		2.9				0.6	1 0.11 0
9.1 8.3	0 2.1 0 2.3	0 0	143 132		0.92 0.92	0 0	0.25 0.25	1 1	33 26.1	1	5.9 4	1	26.8 29	1	9 23.1	1			27.5 29.7	1 1	5.3 4.8	0	1.5	0	3.8 3.4		78.6 62.9		5.2 3.3	1 0.053 1 1 2.4 1
	0 2.4	0	252		0.92	0	0.23	1	28.8	1	6.6	1	27.2	1	7.7	1			28.3		4.8	0	1.4 1.4	0	3.4				4.1	1 0.17 1
8.2	0 2.4	0	38.9		0.6	0	0.25	1	18.9	1	1.9	1	17.4	1	3.1	1			10.3		4.8	0	1.4	0	3.4	0	46		4.1 8.1	1 0.17 1
	0 2.7	0	136		0.85	0	0.29	1	25.6	1	4.7	1	27.4	1	7.6	1			23.6		4.7	0	1.4	-	3.4	0			6.1	1 0.045 1
	0 2.5	0	311		0.72	0	0.18	1	27.7	1	3.3	1	21.4	1	7.1	1			21.5		4.7	0	1.3		3.3		60.2		6.4	1 0.13 0
9.9	0 2.9	0	185		1.3	0	0.36	1	45.4	1	6.3	1	35.1	1	9.3	1			47.4		5.8	0	1.6	0	4.1	0	101		3.4	1 0.16 1
8.1	0 1.8	0	138		1.2	0	0.37	1	3.3	1	8	1	28.7	1	9.2	1			30.8		4.7	0	1.3	0	3.4				9.7	1 0.4 1
9	0 2.3	0	161		1.2	1	0.53	1	41.1	1	10.5	1	30.3	1	8.8	1			45.6		5.3	0	1.5	0	3.8		86.5		0.4	1 0.15 0
7.6	0 2.4	0	144		0.83	1	0.15	1	30.9	1	5.7	1	31.1	1	6.6	1			26.1		4.4	0	1.3	0	3.2	0	80		5.6	1 0.13 0
8.1	0 3.2	1	137	1	1.3	1	0.4	1	30.5	1	6	1	32.1	1	9.6	1			29.9	1	4.7	0	1.3	0	3.4	0	78.1	1 3	6.9	1 0.13 0
9	0 2.5	0	163	1	1.4	1	0.42	1	28.9	1	7.6	1	25	1	10.2	1			31.7	1	5.2	0	1.5	0	3.7	0	70.3	1 4	0.2	1 0.15 0
9.8	0 1.8	1	138	1	1.3	1	0.6	1	43.5	1	2.2	1	30.4	1	9.6	1			28.6	1	5.7	0	1.6	0	4.3	0	86.6	1 2	8.6	1 0.16 0
7.9	0 2.4	1	126	1	1	1	0.35	1	25.1	1	6	1	28	1	7.3	1			24.3	1	4.6	0	1.3	0	3.3	0	53.2	1 3	3.1	1 0.067 1
8.1	0 1.9	1	122	1 (0.97	1	0.36	1	24.3	1	4.8	1	25.9	1	6.9	1			24.1	1	4.7	0	1.3	0	3.4	0	58	1 2	9.5	1 0.054 1
9	0 3	1	255		1.4	1	0.59	1	49.3	1	14.1	1	35.2	1	10.8	1			45.7	1	5.2	0	1.5	0	3.7	0	106	1 4	5.4	1 0.15 0
8.7	0 3.5	1	202		1.5	1	0.67	1	32.2	1	6.8	1	29.6	1	11.1	1			34.3		5.1	0	1.5	0	3.6				1.2	1 0.15 0
8.8	0 1.9	1	168		1.3	1	0.49	1	36.8	1	7.6	1	27.9	1	9.4	1			35.9		5.1	0	1.5		3.7		79.3		6.6	1 0.15 0
7.7	0 1.6	1	106		0.77	1	0.24	1	31.5	1	7.5	1	30.5	1	7.4	1			29.3		4.5	0	1.3	0	3.2		68.6		0.8	1 0.13 0
	0 2.7	1	132	1 (0.81	1	0.5	1	27.5	1	6.1	1	39.3	1	70.3	1			30.4	1	5.1	0	1.5	0	3.6				1.3	1 2.3 1
8.5	0 17	1	122	1	1.1	1	0.37	1	30 30.4	1	6.2	1	34.9	1	23.9	1			28.2	1	4.9	0	1.4	0	3.5		72.3		6.4 e o	1 8 1
9 0 0	0 1.7	1	109 146	1	1.4	T	0.42	1	39.4 39.6	1	5.6 8.8	1	25.6	1	10 8 7	1			35.8 37.3		5.2	0	1.5	-	3.7	0 0	81 83 0		6.8 _{8.1}	1 1.2 1
8.9 8.7	0 1.7 0 3.9	1	146 168		1.2 1.5	1	0.57 0.49	1 1	39.6 39.8	1	8.8 2.1	1	28.1 17.8	1	8.7 9	1			37.3 24.5		5.2 5.1	0	1.5 1.4		3.7 3.6		83.9 57.3		8.1 2.1	1 0.061 1 1 0.14 0
	0 3.5	1	299		1.5	1	0.49	1	66.9	1	13.7	1	28.8	1	13.4	1			71.8		5.2		1.4		3.7				2.1 6.5	1 0.091 1
	0 3.5	1	282		1.1	1	0.55	1	68.4	1	11.9	1	33.2		21.6	1			75.8		5.5	0	1.6	0	4		103		4.5	1 0.16 0
8.4	0 2.7	1	304		0.88	0	0.44	1	51.4	1	8.7	1	40.8		11.1	1			44		4.9	0	1.4		3.5				0.8	1 0.048 1
	0 1.2	1	118	1	1	0	0.54	1	48.4	1	10.5	1			27.5	1			56.6		4.4	0	1.3		3.2				4.4	1 0.13 0
8.3	0 1.4	0	37.8	1	1.1	0	0.59	1	6.9	1	1.8	1	20.6	1	8.3	1			7.4		4.8	0	1.4		3.5		40.7		8.6	1 0.14 0
	0 1.4	0	14.4		1.1	0	0.54	1	10.8	1	7	0		1	7.5	1			11.9		4.9	0	1.4		3.5				7.5	1 0.14 0
	0 0.97	1	199	1	1.3	0	0.7	1	14.4	1	7.1	0	34.1	1	9.5	1			13.9	1	5	0	1.4		3.5	0		1 2		1 0.057 1
7.7	0 2.4	1	429	1	1.5	1	0.93	1	48.7	1	11.2	1	45.6	1	23	1			42.7	1	4.6	0	1.3	0	3.2	0	98.4		5.7	1 0.13 0
	1 5.7	1	224		1.1	1			42	1	14.6	1	31.3	1	9.1	1			35.5	1		(0.32	0					0.5	1 0.08 0
	1 7.3	1	118		1.2	1			25.8	1	7.1	1	19.3	1	9.3	1			22.1	1			0.62	1					3.9	1 0.07 0
	1 0.63	0	25.3		0.21	0			18.9	1	9.4	1	61.8	1	8	1			42.2	1			0.21	0					.09	1 0.06 0
3.6	1 4.1	1	273	1 (0.57	1			29.7	1	6.8	1	39	1	33.1	1			36.9	1			0.28	0			53.2		2.9	1 0.07 0
4.5	1 8	1	412	1	1	1			74.5	1	14.7	1	31.9	1	11.6	1			84.8	1			0.32	0			102	1 7		1 0.07 0
1.6	1 3.2	1	113	1 (0.38	1			80.5	1	10.4	1	22.6	1	9.9	1			82.6	1		(0.27	0			57	1 3	5.3	1 0.07 0

	Α	В
1	As culled	D_As culled
2	1	0
3	1	0
4	1.2	1
5	1.9	1
	3.1	1
6	2.2	1
7	1	0
8	1	0
9	2.5	1
10		
11	1	0
12	1	0
13	1	0
14	3.2	1
15	3.9	1
16	3.4	1
17	1.2	0
18	2.2	1
19	1	1
20	2.3	1
21	3.2	1
22	2.7	1
23	0.6	0
24	1.1	0
	2.1	0
25	2.3	0
26	2.4	0
27	2.3	0
28	2.7	0
29		0
30	2.5	
31	2.9	0
32	1.8	0
33	2.3	0
34	2.4	0
35	3.2	1
36	2.5	0
37	1.8	1
38	2.4	1
39	1.9	1
40	3	1
41	3.5	1
42	1.9	1
43	1.6	1
44	2.7	1
45	3	1
46	1.7	1
47	1.7	1
48	3.9	1
	3.5	1
49	3.5	1
50	2.7	1
51	1.2	1
52	1.4	0
53	1.4	0
54	0.97	1
55		1
56	2.4	1
57		
58		-
59	0.63	0
60	4.1	1
61		
	3.2	1

	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N
1				D_Pb DTTP										Feet
2	34.4	1				1		1		1				
3	7.7	1			33.1	1			0.17	1				
4	10			1	5.9	1			1.2	1	_			
5	70.3			1	7.7	1			2.3	1	2.4			
6	23.1	1			5.8	1	1.2	1	2.4	1	8			
7	23.9	1	_		2.8	1		0		1		0		
8	8	1	2.2	1	2.9	1	-		0.06	0	0.11	0		
9	9.3	1		1	1.2	1			0.07	0				
10	9.1	1		1	25	1			0.08	0				
11	2.2	1	-	1	1	0			0.11	0		0		
12	7.4	1		1	2.9	1	_	1	0.13	0				
13	9.6	1		1	15	1			0.13	0				
14	6.6	1		1	13	1			0.13	0				
15	7.1	1			9.3	1			0.13	0				
16	2.7	1	-	1	2.6	1			0.13	0				
17	3.1	1			7.5	1			0.14	0				
18	8.4	1							0.14	0		1		
19	9.4	1	6.9	1					0.15	0		1		
20	11.1	1		1					0.15	0		1		
21	10.8	1		1					0.15	0		1		
22	10.2	1		1					0.15	0		1		
23	8.8	1		1					0.15	0		1		
24	9.1	1							0.15	0				
25	9.6								0.16	0				
26	25.6	1							0.04	1				
27	7.6	1							0.045	1				
28	9	1							0.053	1				
29	6.9	1							0.054	1				
30	8.7	1							0.061	1				
31	7.3	1							0.067	1				
32	2.4	1							0.072	1				
33	9.2	1							0.1	1				
34	7.5	1							0.12	1				
35	9.3	1							0.16	1				

DRO	D_DRO	ORO	D_ORO	PCP	D_PCP	TEQ	D_TEQ
8.6	0	82	1	0.075	1	3.61	1
5.9	0	38	1	1.3	0	95.9	1
3.5	0	14	0			30.8	1
3.4	0	14	0	0.067	0	60	1
3.2	0	13	0	0.067	0	144	1
160	1	730	1	0.067	0	51.4	1
130	1	540	1	0.067	0	1.63	1
160	1	550	1	0.067	0	78	1
93	1	320	1	0.067	0	15.8	1
410	1	1,100	1	0.067	0	142	1
310	1	520	1	0.067	0	38.7	1
1.4	1	2.7	1	1.6	0	41.1	1
36	1	160	1	1.6	0	180	1
26	1	89	1	1.6	0	7.02	1
15	1	41	1	1.6	0	64.8	1
840	1	3,200	1	1.6	0	19.2	1
330	1	1,100	1	1.6	0	17.2	1
71	1	350	1	1.6	0	7.66	1
430	1	1,800	1	1.6	0	39.6	1
490	1	1,700	1	1.6	0	7.42	1
330	1	1,200	1	2.5	1.0	37.8	1
240	1	1,100	1	5.4	1.0	7.69	1
5,000	1	14,000	1 1	1.6	0	171	1
730	1	2,100	1	1.6	0	7.41	1
1,200	1	4,000	1	1.6	0	121	1
640	1	2,400	1	1.6	0	116	1
900	1	3,000		1.6	0	141	1
130	1	270	1	1.6	0	196 100	1
6.8	1	10	1	1.6	0	142	1
1.7	1 1	1.1	1	1.6 1.6	0	450	1
72 56	1	120 91	1	1.6	0	60.1	1
2.4	1	3.0	1	1.6	0	7.98	1
55	1	110	1	1.6	0	3.91	1
310	1	920	1	1.6	0	2.77	1
2.0	1	1.7	1	1.6	0	5.23	1
73	1	98	1	1.6	0	3.04	1
9.6	1	54	1	1.6	0	2.02	1
31	1	85	1	1.6	0	22.33	1
120	1	240	1	1.6	0	27.71	1
3.8	1	3.1	1	1.6	0	15.23	1
3.1	1	3.7	1	1.6	0	2.44	1
140	1	350	1	1.6	0	41.18	1
7.2	1	14	1	1.6	0	30.8	1
2.1	1	1.6	1	1.6	0	48.5	1
130	1	280	1	1.6	0	8.2	1
				-			

78	1	120	1	1.6	0	49.5	1
71	1	160	1	1.6	0	150	1
120	1	320	1	1.6	0	8.67	1
68	1	120	1	1.6	0	110.66	1
55	1	140	1	1.6	0	310.59	1
650	1	1,400	1	1.6	0	1.36	1
17	1	39	1	1.6	0	16.08	1
5.8	1	5.5	1	1.6	0	22.54	1
320	1	1,000	1	7.3	1.0	44.33	1
260	1	420	1	7.5	1.0	0.49	1
10	1	18	1	2.4	1.0	199.05	1
12	1	28	1	1.6	0	201	1
10	1	17	1	1.6	0	216	1
310	1	830	1	1.6	0	3.35	1
520	1	1,000	1	1.6	0	43.4	1
5.6	1	7.5	1	1.6	0	21.5	1
590	1	1,500	1	1.6	0	241	1
1,600	1	3,500	1	1.6	0	110	1
6.3	1	9.1	1	1.6	0	149	1
34	1	78	1	1.6	0	68.6	1
33	1	89	1	1.6	0	61.5	1
130	1	310	1	1.6	0	3.85	1
52	1	100	1	5.6	1.0	62	1
7.3	1	10	1	8.0	1.0	124	1
784		16	1	1.6	0	271	1
14	0	6.7	1	0.02	0	41	1
7.9	1	2.5	1	0.02	0	99	1
5.5	1	2.2	1	1.1	1	4.4	1
3.4	1	4.0	1	0.027	1	260	1
3.2	1	150	1	130	1	180	1
6.9	1	4.3	1	0.27	1	110	1
58	1	2.4	1	0.14	1	190	1
3.5	1	1.3	1	0.25	1	91	1
2.9	1	2.6	1	0.068	1	3.5	1
2.1	1	6.5	1	1.2	0	13	1
2.7	1	4.0	1	1.1	0	58	1
6.0	1	1.9	1	4.7	0	0.59	1
3.8	1	3.1	1	1.2	0	4	1
2.6	1	1.6	1	1.2	0	51	1
2.3	1	1.8	1	11	1	70	1
1.6	1	86	1	12	1	36	1
2.4	1	31	1	0.095	1	30	1
41	1	13	1	0.75	1		
19	1	3.7	1	1.5	1		
10	1	44	1	1.3	0		
4.3	1	4.5	1	1.3	0		
62	1	3.2	1	1.3	0		

5.8	1	2.4	1	1.1	0
4.2	1	3.9	1	0.49	1
3.1	1	2.2	1	0.18	1
4.0	1	2.6	1	1.4	0
3.1	1	7.8	1	7.9	1
4.0	1	2.3	1	4.9	1
4.9	1	1.9	1	0.2	1
3.2	1	4.6	1	1.2	0
2.8	1	3.7	1	1.2	0
4.3	1	2.8	1	1	0
3.7	1	4.2	1	150	1
3.6	1	2.2	1	150	1
4.7	1	2.3	1	15	1
3.1	1	83	1	0.95	0
3.1	1	130	1		
33	1	23	1	0.4	0
54	1	6.4	1	32	1
15	1	17	1	1.2	0
4.9	1	2.6	1	2.5	1
9.8	1	50	0	1.6	0
3.0	1	50	0		
1	0	50	0		
0.99	0	50	0		
44	1	14	0		
0.99	0	15	0		
3.5	0	13	0		
3.8	0	520	1		
3.3	0	170	1		
35	0	13	0		
8.9	0	89	1		
3.3	0	46	1		
47,000	1	66	1		
72	1	120	1		
29	1	95	1		
38	1	130	1		
80	1	100	1		
57 69	1	140	1		
54	1 1	160 82	1		
67	1	35	1 1		
83		33	1		
23	1 1				
18	1	570	1		
10	1	720	1		
594	1	4,100	1		
100	1	2600			
56 J	1	65	1		

130	1	120	1
<160		130	1
9.7	1	460	1
22	1	520	1
54	1	1,500	1
130	1	1300	1
74	1	1,600	1
490	1	1,200	1
100 J	1	1,300	1
450	1	79	1
270	1	36	1
340	1	33	1
24	1	2,300	1
12	1	2,200	1
11	1	3,100	1
720	1	4,500	1
670	1	5,900	1
960	1	3,500	1
1,300	1	2,600	1
1,900	1	180	1
810	1	860	1
640	1	630	1
59	1	2,400	1
240	1	4,600	1
210	1	2,700	1
570	1	2,000	1
1,300	1	400	1
770	1	300	1
630	1	95	1
190	1	21	1
150	1	21	1
39	1	1.3	1
8.3	1	420	1
14	1	280	1
1.7	1	270	1
300	1	780	1
170	1	720	1
170	1	1,200	1
410	1	13	1
580	1	16	1
860	1	10	1
8.1	1		
8.9	1		
5.4	1		

	Α	В	С	D	E	F	G
1	DRO	D_DRO	ORO	D_ORO	PCP	D_PCP	TEQ
2	72	1	89	1			142
3	29	1	46	1			38.7
4	38	1	66	1			41.1
5	80	1	120	1			
6	57	1	95	1			
7	69	1	130	1			
8	54	1	100	1			
9	67	1	140	1			
10	83	1	160	1			
11	23	1	82	1			
12	18	1	35	1			
13					1.6	0	
14	594	1					

	Α	В	С	D	E	F	G
1	DRO	D-DRO	ORO	D_ORO	PCP	D_PCP	TEQ
2	72	1	89	1			142
3	29	1	46	1			41.1
4	38	1	66	1			
5	80	1	120	1			
6	57	1	95	1			
7	69	1	130	1			
8	54	1	100				
9	67	1	140				
10	83	1	160				
11	23	1	82	1			
12	18	1	35	1			
13					1.6	0	
14	594	1					

	Α	В	С	D	E	F	G
1	DRO	D_DRO	ORO	D_ORO	PCP	D_PCP	TEQ
2	160	1	730	1			95.9
3	130	1	540	1			30.8
4	160	1	550	1			60
5	93	1	320	1			144
6	410	1	1100	1			51.4
7	310	1	520	1			1.63
8	1.4	1	2.7	1			
9	36	1	160	1			
10	26	1	89	1			
11	15	1	41	1			
12	840	1	3200	1			
13	330	1	1100	1			
14	71	1	350	1			
15	430	1	1800	1			
16	490	1	1700	1			
17	330	1	1200	1			
18	240	1	1100	1			
19	5000	1	14000	1			
20	730	1	2100	1			
21	1200	1	4000	1			
22	640	1	2400	1			
23	900	1	3000	1			
24	130	1	270	1			
25	6.8	1	10	1			
26	1.7	1	1.1	1			
27	72	1	120	1			
28	56	1	91	1			
29	2.4	1	3	1			
30	55	1	110	1			
31	310	1	920	1			
32	2	1	1.7	1			
33	73	1	98	1			
34	9.6	1	54	1			
35	31	1	85	1			
36	120	1	240	1			
37	3.8	1	3.1	1			
38	3.1	1	3.7	1			
39	140	1	350	1			
40	7.2	1	14	1			
41	2.1	1	1.6	1			
42	130	1	280	1			
43	78	1	120	1			
44	71	1	160	1			
45	120	1	320	1			
46	68	1	120	1			
47	55	1	140	1			
48	650	1	1400	1			
49	17	1	39	1			
50	5.8	1	5.5	1			
51	320	1	1000	1			
52	260	1	420	1			

	Α	В	С	D	Е	F	G
53	10	1	18	1	_		_
54	12	1	28	1			
55	10	1	17	1			
56	310	1	830	1			
57	520	1	1000	1			
58	5.6	1	7.5	1			
59	590	1	1500	1			
60	1600	1	3500	1			
61	6.3	1	9.1	1			
62	34	1	78	1			
63	33	1	89	1			
64	130	1	310	1			
65	52	1	100	1			
66	7.3	1	10	1			
67							
68							
69					0.075	1	
70	784				1.3	0	
71	14	0					

	Α	В	С	D	E	F	G
1	DRO	D_DRO	ORO	D_ORO	PCP	D_PCP	TEQ
2	160	1	730				95.9
3	130	1	540	1			60
4	160	1	550	1			51.4
5	93	1	320	1			
6	410	1	1100	1			
7	310	1	520	1			
8	36	1	160	1			
9	26	1	89				
10	840	1	3200				
11	330	1	1100				
12	430	1	1800	1			
13	490	1	1700				
14	240	1	1100	1			
15	5000	1	14000	1			
16	1200	1	4000	1			
17	640	1	2400	1			
18	130	1	270	1			
19	6.8	1	10	1			
20	72 56	1	120 91	1			
21	55	1	110	1			
22	310	1	920	1			
23	73	1	920	1			
24	9.6	1	54				
25	120	1	240	1			
26	3.8	1	3.1	1			
27	140	1	350	1			
28	7.2	1	14	1			
29	130	1	280	1			
30	78	1	120	1			
31 32	120	1	320	1			
33	68	1	120	1			
34	650	1	1400	1			
35	17	1	39	1			
36	320	1	1000	1			
37	260	1	420	1			
38	10	1	18	1			
39	12	1	28	1			
40	310	1	830	1			
41	520	1	1000	1			
42	590	1	1500	1			
43	1600	1	3500	1			
44	34	1	78	1			
45	33	1	89	1			
46	130	1	310	1			
47							
48							
49	784				1.3	0	

	Α	В	С	D	Е	F	G
1	DRO	D_DRO	ORO	D_ORO	PCP	D_PCP	TEQ
2					0.067	0	78
3					0.067	0	15.8
4					0.067	0	
5					0.067	0	
6					0.067	0	
7					0.067	0	
8					0.067	0	
9					0.067	0	
10	7.9	1	16	1	1.6	0	
11	5.5	1	6.7	1	1.6	0	
12	3.4	1	2.5	1	1.6	0	
13	3.2	1	2.2	1	1.6	0	
14	6.9	1	4	1	1.6	0	
15	58	1	150	1	1.6	0	
16	3.5	1	4.3	1	1.6	0	
17	2.9	1	2.4	1	1.6	0	
18	2.1	1	1.3	1	1.6	0	
19	2.7	1	2.6	1	2.5 5.4	1	
20	3.8	1	6.5	1	1.6	0	
21	2.6	1	1.9	1	1.6	0	
22	2.3	1	3.1	1	1.6	0	
23	1.6	1	1.6	1	1.6	0	
24	2.4	1	1.8	1	1.6	0	
25	2.7		1.0		1.6	0	
26					1.6	0	
27					1.6	0	
28					1.6	0	
29					1.6	0	
30					1.6	0	
31					1.6	0	
32					1.6	0	
34					1.6	0	
35					1.6	0	
36					1.6	0	
37					1.6	0	
38					1.6	0	
39					1.6	0	
40					1.6	0	
41					1.6	0	
42	41	1	86	1	1.6	0	
43	19	1	31	1	1.6	0	
44	10	1	13	1	1.6	0	
45					1.6	0	
46					1.6	0	
47					1.6	0	
48					1.6	0	
49					1.6	0	
50					1.6	0	
51					1.6	0	
52					1.6	0	

	Α	В	С	D	E	F	G
53	4.3	1	3.7	1	7.3	1	
54	62	1	44	1	7.5	1	
55	5.8	1	4.5	1	2.4	1	
56	4.2	1	3.2	1	1.6	0	
57	3.1	1	2.4	1	1.6	0	
58					1.6	0	
59					1.6	0	
60					1.6	0	
61					1.6	0	
62					1.6	0	
63					1.6	0	
64					1.6	0	
65					1.6	0	
66					1.6	0	
67					5.6	1	
68					8	1	
69	4	1	3.9	1	1.6	0	
70	3.1	1	2.2	1			
71	4	1	2.6	1			
72	4.9	1	7.8	1			
73	3.2	1	2.3	1			
74	2.8	1	1.9	1			
75	4.3	<u>'</u> 1	4.6	1			
76	3.7	1	3.7	1			
77	3.6	 1	2.8	1			
78	4.7	1	4.2	1			
79	3.1	1	2.2	1			
80	3.1	1	2.3	1			
81	33	1	83	1			
82	54	1	130	1			
83 84	15	1	23	1			
85	4.9	1	6.4	1			
86	9.8	1	17	1			
87	3	1	2.6	1			
88					0.02	0	
89					0.02	0	
90	1	0	50	0	1.1	1	
91	0.99	0	50	0	0.027	1	
92	44	1	50	0	130	1	
93	0.99	0	50	0	0.27	1	
94					0.14		
95					0.25		
96					0.068		
97					1.2	0	
98					1.1	0	
99					4.7	0	
100					1.2	0	
101					1.2	0	
102					11	1	
103					12	1	
104					0.095	1	
_							

.

	Α	В	С	D	E	F	G
105					0.75	1	
106					1.5	1	
107					1.3	0	
108					1.3	0	
109					1.3	0	
110					1.1	0	
111					0.49	1	
112	3.5	0	14	0	0.18	1	
113	3.8	0	15	0	1.4	0	
114					7.9	1	
115	3.3	0	13	0	4.9	1	
116					0.2	1	
117	35	0	520	1	1.2	0	
118	8.9	0	170	1	1.2	0	
119	3.3	0	13	0	1	0	
120					150	1	
121					150	1	
122					15	1	
123					0.95	0	
124	47000	1					
125	·			·	0.4	0	
126					32	1	
127					1.2	0	
128					2.5	1	

	Α	В	С	D	Е	F	G
1		D_DRO				D_PCP	TEQ
2	7.9	1	16	1	0.067	0	78
3	5.5	1	6.7	1	0.067	0	
4	58	1	150	1	0.067	0	
5	3.5	1	4.3	1	0.067	0	
6	2.7	1	2.6	1	1.6	0	
7	6	1	6.5	1	1.6	0	
8	2.3	1	3.1	1	1.6	0	
9	1.6	1	1.6	1	1.6	0	
10	41 19	1	86 31	1	2.5 5.4	1	
11	4.3	1	3.7	1	1.6	0	
12	62	1	44	1	1.6	0	
13	5.8	1	4.5		1.6	0	
14	4	1	3.9	1	1.6	0	
15	3.1	1	2.2	1	1.6	0	
16	4.9	1	7.8	1	1.6	0	
17 18	3.2	1	2.3	1	1.6	0	
19	4.3	1	4.6	1	1.6	0	
20	3.7	1	3.7	1	1.6	0	
21	4.7	1	4.2	1	1.6	0	
22	3.1	1	2.2	1	1.6	0	
23	33	1	83	1	1.6	0	
24	54	1	130	1	1.6	0	
25	4.9	1	6.4	1	1.6	0	
26	9.8	1	17	1	1.6	0	
27					1.6	0	
28	1	0	50	0	1.6	0	
29	44	1	50	0	1.6	0	
30	3.5	0	14	0	1.6	0	
31	3.3	0	13	0	1.6 7.3	0	
32	3.3	0	520	1	7.5	1	
33	8.9	0	170	1	2.4	1	
34	0.0	-	170		1.6	0	
35					1.6	0	
36					1.6	0	
37 38	47000	1			1.6	0	
39					1.6	0	
40					1.6	0	
41					5.6	1	
42					8	1	
43					0.02	0	
44					1.1	1	
45					130	1	
46					0.14	1	
47					0.25	1	
48					0.068	1	
49					1.2	0	
50					4.7	0	
51					1.2	0	
52							

	Α	В	С	D	E	F	G
53					12	1	
54					0.75	1	
55					1.5	1	
56					1.3	0	
57					0.49	1	
58					0.18	1	
59					7.9	1	
60					4.9	1	
61					1.2	0	
62					1.2	0	
63					150	1	
64					150	1	
65					0.95	0	
66							
67					0.4	0	
68					32	1	
69					2.5	1	

	Α	В	С	D	E	F	G
1	DRO	D_DRO		D_ORO	PCP	D_PCP	TEQ
2	270	1	1200	1			141
3	340	1	1300	1			196
4	24	1	79	1			100
5	12	1	36	1			142
6	11	1	33	1			450
7	720	1	2300	1			60.1
8	670	1	2200	1			7.98
9	960 1300	1	3100 4500	1			3.91 2.77
10	1900	1	5900	1			5.23
11	810	1	3500	1			3.04
12	640	1	2600	1			2.02
13	59	1	180	1			22.33
14	240	1	860	1			27.71
15	210	1	630	1			15.23
16 17	570	1	2400	1			2.44
18	1300	1	4600	1			41.2
19	770	1	2700	1			30.8
20	630	1	2000	1			48.5
21	190	1	400	1			8.2
22	150	1	300	1			49.5
23	39	1	95	1			150
24	8.3	1	21	1			8.67
25	14	1	21	1			110.66
26	1.7	1	1.3	1			310.59
27	300	1	420	1			1.36
28	170	1	280	1			16.08
29	170	1	270	1			22.54
30	410	1	780	1			44.33
31	580	1	720	1			0.49
32	860 8.1	1	1200 13	1			199.05 201
33	8.9	1	16	1			201
34	5.4	1	10	1			3.35
35	0.4	<u>'</u>	10	<u>'</u>			43.4
36							21.5
37 38							241
39							110
40							149
41							68.6
42							61.5
43							3.85
44							62
45							124
46							271
47							41
48							99
49							4.4
50							260
51							180
52							110

	Α	В	С	D	E	F	G
53							190
54							91
55							3.5
56							13
57							58
58							0.59
59							4
60							51
61							70
62							36
63							30

	Α	В	С	D	Е	F	G
1	DRO	D_DRO	ORO	D_ORO	PCP	D_PCP	TEQ
2	270	1	1200	1			141
3	340	1	1300	1			100
4	24	1	79	1			60.1
5	720	1	2300	1			3.91
6	670	1	2200	1			2.77
7	810	1	3500	1			22.33
8	640	1	2600	1			27.71
9	59	1	180	1			15.23
10	570	1	2400	1			30.8
11	1300	1	4600	1			48.5
12	190	1	400	1			8.2
13	150	1	300	1			8.67
14	8.3	1	21	1			110.66
15	14		21	1			16.08
16	300	1	420	1			22.54
17	170	1	280	1			199.05
18	410	1	780	1			201
19	580	1	720	1			43.4
20	8.1	1	13	1			21.5
21	8.9	1	16	1			149
22							68.6
23							62
24							124
25							99
26							4.4
27							180
28							110
29							91
30							3.5
31							58
32							0.59
33							51
34							70
35							30

	Α	В	С	D
1	GW Pb	D_GW Pb	GW TEQ	D_GW TEC
2	0.024	1	0.257	1
3	0.005	0	22.3	1
4	0.018	1	8.52	1
5	0.02	1	0.24	1
6	0.022	1	1.02	1
7	0.042	1	20.3	1
8	0.018	1	14.1	1
9	0.069	1	0.168	1
10	0.015	1	0.551	1
11	0.005	0	1.73	1
12	0.032	1	3.62	1
13	0.025	1	50.4	1
14	0.013	1	130	1
15	0.19	1	3.9	1

Table 1a - Summary of Statistical Evaluation for Inorganics in Soil, Entire Site

Mount Shasta, California

Constituent	Sb	As	Ва	Be	Cd	Cr	Со	Cu	Pb	Hg	Мо	Ni	Se	Ag	TI	٧	Zn	CrVI
Population	61	61	61	61	55	61	61	61	61	61	15	61	55	61	55	61	61	40
Detections	6	37	60	24	38	60	58	60	60	18	1	60	1	1	0	60	61	1
Max Non-Detect	9.9	2.9	18	1.3	1.0	1.0	1.0	2.0	1.0	0.06	1.0	1.0	5.8	1.6	4.1	1.0	2.0	6.2
Min Non-Detect	0.96	0.6	18	0.09	0.57	1.0	7.1	2.0	1.0	0.16	1.0	1.0	1.0	1.0	1.0	1.0	2.0	2.2
% Non-Detect	90	39	2	61	45	2	5	2	2	70	93	2	98	98	100	2	100	98
Minimum ¹	<0.96	0.97	5.5	0.38	0.15	3	1.4	4.2	1.2	0.04	1.2	3.1	2.3	0.62	na	8.4	4.3	0.2
Maximum ¹	4.8	8.0	610	1.5	0.93	80.5	17.3	82.6	70.3	8.0	1.2	89.8	2.3	0.62	na	134	109	0.2
Mean Detect	3.2	2.9	166	1.14	0.43	29.2	6.23	28.3	11.7	0.86	1.2	30.8	2.3	0.62	na	59.5	38.5	0.2
SD ²	1.43	1.51	121	0.30	0.18	17.4	3.85	13.2	10.7	1.93	na	19.7	na	na	na	30.7	22.4	na
CV ²	0.45	0.52	0.73	0.27	0.43	0.60	0.62	0.47	0.92	2.26	na	0.64	na	na	na	0.52	0.58	na
Outlier Values ³	none	5.7,7.3,8.0	610	none	none	none	none	82.6	70.3,34.4,33.1	multiple	na	none	na	na	na	none	none	none
Distribution ²	Normal	Gamma	Non- Parametric	Normal	Normal	Non- Parametric	Gamma	Non- Parametric	Non- Parametric	Non- Parametric	na	Non- Parametric	na	na	na	Normal	Gamma	na
UCL method ²	95% KM (t)	95% KM Approx. Gamma	95% KM (Chebyshev)	95% KM (t)	95% KM (t)	95% KM (Chebyshev)	95% KM Approx. Gamma	95% KM (Chebyshev)	95% KM (Chebyshev)	95% KM (Chebyshev)	na	95% KM (Chebyshev)	na	na	na	95% KM (t)	95% KM Approx. Gamma	na
UCL value ²	2.19	2.51	231	0.79	0.47	38.6	6.99	35.4	17.4	0.92	na	41.4	na	na	na	65.3	44.0	na

Table 1b - Summary of Statistical Evaluation for Organics in Soil, Entire Site

The Landing - Old Mill Section

Mount Shasta, California

Constituent	DRO	ORO	PCP	TEQ
Population	180	179	111	88
Detections	164	167	30	88
Max Non-Detect	784	2600	5	na
Min Non-Detect	0.99	13	0.02	na
% Non-Detect	9	7	73	0
Minimum ¹	1.4	1.1	0.03	0.49
Maximum ¹	47000	14000	150	450
Mean Detect	507	672	18.6	74.4
Distribution ²	Non- Parametric	Non- Parametric	Lognormal	Gamma
UCL method ²	95% KM (Chebyshev)	95% KM (Chebyshev)	KM-H	95% Approx. Gamma
UCL value ²	1607	1099	4.69	93.2

Notes:

- 1 Soil concentrations are shown in milligrams per kilograms (mg/kg)
- 2 At five percent significance level based on Rosner's Outlier Test
- 3 Distribution, UCL/BTV method and CV, SD, UCL/BTV calculations by ProUCL 5.1 (USEPA, 2016). Background population determined pursuant to DTSC (1997) guidance.
- < = constituent not detected at concentration greater than or equal to the listed laboratory detection limit
- BTV = background threshold value of background population, defined as the population nearest the origin on quantile-quantile plot per DTSC (1997) guidance.
- CV = coefficient of variation
- EPC = exposure point concentration

KM = Kaplan Meier

NA = not applicable or not available

UCL = upper confidence limit on the arithmetic mean

SD = standard deviation

 $C_{UL0.95}$ (X_{0.99}) = 95% UCL of the 99th percentile

Values in **bold** font are used as EPCs.

Table 1c - Summary of Statistical Evaluation for COCs in Soil, All Depths

Mount Shasta, California

AOC		Log Pond	d Area				Dip Tank/Tra	nsfer Pit Are	а			Boiler Roo	m Area			Re	fuse Burner	Area	
Constituent	DRO	ORO	PCP	TEQ	DRO	ORO	PCP	TEQ	Pb	Hg	DRO	ORO	PCP	TEQ	DRO	ORO	PCP	TEQ	Pb
Population	12	11	1	3	53	52	108	2	34	34	67	65	2	3	34	34	0	62	16
Detections	12	11	0	3	44	44	26	2	34	16	67	65	1	3	34	34	0	62	15
Max Non-Detect	na	na	1.6	na	35	50	4.7	na	na	0.16	na	na	1.3	na	na	na	na	na	1.0
Min Non-Detect	na	na	1.6	na	0.99	13	0.02	na	na	0.06	na	na	1.3	na	na	na	na	na	1.0
% Non-Detect	0	0	100	0	20	15	76	0	0	53	0	0	50	0	0	0	na	100	6
Minimum ¹	12	35	na	38.7	1.6	1.3	0.03	15.8	2.2	0.04	1.4	1.1	0.075	51.4	1.7	1.3	na	0.49	1.2
Maximum ¹	594	160	na	142	47000	520	150	78	70.3	8.0	5000	14000	0.075	95.9	1900	5900	na	450	33.1
Mean Detect	99	96.6	na	73.9	1079	31.6	21.5	46.9	11.9	0.94	291	828.9	na	69.1	422	1314	na	81.3	9.41
Distribution ²	Non- Parametric	Normal	na	na	Non- Parametric	Non- Parametric	Lognormal	na	Non- Parametric	Non- Parametric	Gamma	Gamma	na	na	Gamma	Gamma	na	Gamma	Gamma
UCL method ²	95% KM (Mean, SD)	95% Student's-t	na	na	95% KM (Chebyshev)	95% KM (Chebyshev)	КМ Н	na	95% Chebyshev (Mean, SD)	95% KM (Chebyshev)	95% Adjusted Gamma	95% Adjusted Gamma	na	na	95% Adjusted Gamma	95% Adjusted Gamma	na	95% KM Approx. Gamma	95% KM Adjusted Gamma
UCL value ²	297	118	na	na	4768	75.4	5.50	na	21.1	1.57	410	1208	na	na	662	2146	na	108	15.5

Table 1d - Summary of Statistical Evaluation for COCs in Soil, Upper Two Feet

The Landing - Old Mill Section

Mount Shasta, California

AOC		Log Pond	l Area				Dip Tank/Tra	nsfer Pit Are	a			Boiler Roc	m Area			Re	fuse Burner	Area	
Constituent	DRO	ORO	PCP	TEQ	DRO	ORO	PCP	TEQ	Pb	Hg	DRO	ORO	PCP	TEQ	DRO	ORO	PCP	TEQ	Pb
Population	12	11	1	2	32	31	67	1	22	22	46	45	1	3	20	20	0	34	11
Detections	12	11	0	2	27	27	24	1	22	12	46	45	0	3	20	20	0	34	10
Max Non-Detect	na	na	1.6	na	35	50	4.7	na	na	0.15	na	na	1.3	na	na	na	na	na	1.0
Min Non-Detect	na	na	1.6	na	1	13	0.02	na	na	0.06	na	na	1.3	na	na	na	na	na	1.0
% Non-Detect	0	0	100	0	16	13	64	0	0	45	0	-	100	0	0	0	na	0	6
Minimum ¹	18	35	na	41.1	1.6	1.6	0.07	78	2.2	0.04	3.8	3.1	na	51.4	8.1	13	na	0.59	1.2
Maximum ¹	594	160	na	142	47000	520	150	78	70.3	8.0	5000	14000	na	95.9	1300	4600	na	201	33.1
Mean Detect	98.7	96.6	na	91.6	1755	48.8	22.6	na	14.1	1.1	373	1036	na	69.1	362	1167	na	64.2	9.1
Distribution ²	Non- Parametric	Normal	na	na	Non- Parametric	Non- Parametric	Non- Parametric	na	Non- Parametric	Non- Parametric	Gamma	Gamma	na	na	Approx. Normal	Gamma	na	Gamma	Approx. Normal
UCL method ²	95% KM (Mean, SD)	95% Student's-t	na	na	97.5% KM (Chebyshev)	95% KM (Chebyshev)	95% KM (Chebyshev)	na	95% Chebyshev (Mean, SD)	95% KM (Chebyshev)	95% Adjusted Gamma	95% Adjusted Gamma	na	na	95% Student's-t	95% Adjusted Gamma	na	95% Adjusted Gamma	95% KM(t)
UCL value ²	297	118	na	na	10,679	122	24.4	na	27.9	2.32	540	1545	na	na	497	2226	na	91.3	13.6

Notes:

- 1 Soil concentrations are shown in milligrams per kilograms (mg/kg)
- 2 At five percent significance level based on Rosner's Outlier Test
- 3 Distribution, UCL/BTV method and CV, SD, UCL/BTV calculations by ProUCL 5.1 (USEPA, 2016). Background population determined pursuant to DTSC (1997) guidance.
- < = constituent not detected at concentration greater than or equal to the listed laboratory detection limit</p>
- BTV = background threshold value of background population, defined as the population nearest the origin on quantile-quantile plot per DTSC (1997) guidance.

CV = coefficient of variation

EPC = exposure point concentration

KM = Kaplan Meier

NA = not applicable or not available

UCL = upper confidence limit on the arithmetic mean

SD = standard deviation

 $C_{UL0.95}(X_{0.99}) = 95\% UCL$ of the 99th percentile

Values in **bold** font are used as EPCs.

Table 1e - Summary of Statistical Evaluation for COCs, Groundwater Monitoring Wells OM-2 through OM-5

Mount Shasta, California

Constituent	Pb	Hg	DRO	ORO	PCP	TEQ
Unit	mg/L	mg/L	ug/L	ug/L	ug/L	pg/L
Population	14	14	14	14	10	14
Detections	12	1	6	6	0	14
Max Non-Detect	0.005	0.2	50	50	1.0	na
Min Non-Detect	0.005	0.2	50	50	0.1	na
% Non-Detect	14	93	57	57	100	0
Minimum ¹	0.013	0.42	70	80	na	0.168
Maximum ¹	0.19	0.42	170	170	na	130
Mean Detect	0.041	na	120	125	na	18.4
Distribution ²	Approx. Lognormal	na	na	na	na	Gamma
UCL method ²	КМ Н	na	na	na	na	95% Adjusted Gamma
UCL value ²	0.065	na	na	na	na	52.7

Table 1f - Summary of Statistical Evaluation for COCs, Groundwater Monitoring Well OM-1

The Landing - Old Mill Section

Mount Shasta, California

Constituent	Pb	Hg	DRO	ORO	PCP	TEQ
Unit	mg/L	mg/L	ug/L	ug/L	ug/L	pg/L
Population	3	3	3	3	3	3
Detections	3	0	1	1	0	3
Max Non-Detect	na	0.2	50	50	1.0	na
Min Non-Detect	na	0.2	50	50	0.1	na
% Non-Detect	0	100	67	67	100	0
Minimum ¹	0.02	na	70	80	na	5.61
Maximum ¹	0.084	na	70	80	na	348
Mean Detect	0.046	na	na	na	na	152
Distribution ²	na	na	na	na	na	na
UCL method ²	na	na	na	na	na	na
UCL value ²	na	na	na	na	na	na

Notes:

Distribution, UCL method and UCL calculations by ProUCL 5.1 (USEPA, 2016).

EPC = exposure point concentration

mg/L = milligram per liter

ug/L = microgram per liter

pg/L = picogram per liter

Table 2 - Summary of Inorganic COC Selection

The Landing - Old Mill Section Mount Shasta, California

Constituent	CAS No.	Unit	Max Detect	EPC ¹	EPC Source	BTV ¹	BTV Source	Does the EPC exceed the Site background range?	Does the Max Detect exceed the Site background range?	Is the constituent considered a COPC?
Antimony	7440-36-0	mg/kg	4.8	2.19	UCL	4.8	Upper Range Bkg	no	no	no
Arsenic	7440-38-2	mg/kg	8.0	2.51	UCL	4.5	Upper Range Bkg	no	yes	no
Barium	7440-39-3	mg/kg	610	231	UCL	429	Upper Range Bkg	no	yes	no
Beryllium	7440-41-7	mg/kg	1.5	0.79	UCL	1.5	Upper Range Bkg	no	no	no
Cadmium	7440-43-9	mg/kg	0.93	0.47	UCL	0.93	Upper Range Bkg	no	no	no
Chromium	16065-83-1	mg/kg	80.5	38.6	UCL	80.5	Upper Range Bkg	no	no	no
Cobalt	7440-48-4	mg/kg	17.3	7.0	UCL	17.3	Upper Range Bkg	no	no	no
Copper	7440-50-8	mg/kg	82.6	35.4	UCL	50.0	Upper Range Bkg	no	yes	no
Lead	7439-92-1	mg/kg	70.3	17.4	UCL	27.5	Upper Range Bkg	no	yes	yes
Mercury	7439-97-6	mg/kg	8.0	0.92	UCL	0.14	Upper Range Bkg	yes	yes	yes
Molybdenum	7439-98-7	mg/kg	1.2	1.2	Site Max	1.2	Upper Range Bkg	no	no	no
Nickel	7440-02-0	mg/kg	89.8	41.4	UCL	89.8	Upper Range Bkg	no	no	no
Selenium	7782-49-2	mg/kg	2.3	2.3	Site Max	2.3	Upper Range Bkg	no	no	no
Silver	7440-22-4	mg/kg	0.62	0.62	Site Max	0.62	Upper Range Bkg	no	no	no
Thallium	7440-28-0	mg/kg	ND	na	na	na	na	no	no	no
Vanadium	7440-62-2	mg/kg	134	65.26	UCL	134	Upper Range Bkg	no	no	no
Zinc	7440-66-6	mg/kg	109	43.95	UCL	109	Upper Range Bkg	no	no	no
Chromium VI	18540-29-9	mg/kg	0.2	0.2	Site Max	na	na	no	no	no

Notes

1 Statistical evaluation performed using ProUCL 5.0 (USEPA, 2013). See Section 4 and ProUCL output in Appendix A.

BTV = background threshold value

COC = constituent of potential concern

EPC = exposure point concentration

mg/kg = milligrams per kilogram soil

na = not applicable

ND = not detected

UCL = 95% upper confidence limit on arithmetic mean value

Table 3 - Toxicity Values

The Landing - Old Mill Section Mount Shasta, California

		RfDo (mg/kg-day)	Rfl	Di (mg/kg-d	ay)	SFo (m	g/kg-day) ⁻¹	SF	i (mg/kg-day	/) ⁻¹	Кр	
Analyte	CAS No.	value	source	RfCi (mg/m³)	source	value	value	source	IUR (ug/m³) ⁻¹	source	value	(cm/hr)	ABS
Antimony, metallic	7440-36-0	4.0.E-04	IRIS	-		-			-			1.0.E-03	0.01
Arsenic, inorganic	7440-38-2	3.5E-06	OEHHA	1.5E-05	OEHHA	3.8E-06	9.5E+00	OEHHA PHG	3.3E-03	OEHHA	1.3E+01	1.0.E-03	0.03
Barium	7440-39-3	2.0E-01	IRIS	5.0E-04	HEAST	1.3E-04			-			1.0.E-03	0.01
Beryllium and compounds	7440-41-7	2.0E-04	OEHHA PHG	7.0E-06	OEHHA	1.8E-06	1		2.4E-03	IRIS	9.6E+00	1.0.E-03	0.01
Cadmium, diet	7440-43-9	6.3E-06	OEHHA PHG	1.0E-05	ATSDR	2.5E-06	1		1.8E-03	IRIS	7.2E+00	1.0.E-03	0.001
Chromium (III), insoluble salts	16065-83-1	1.5E+00	IRIS	1		1	1		-	ı		1.0.E-03	0.01
Cobalt	7440-48-4	3.0E-04	PPRTV	6.0E-06	PPRTV	1.5E-06			9.0E-03	PPRTV	3.6E+01	4.0.E-04	0.01
Copper	7440-50-8	4.0E-02	HEAST	-		-			-			1.0.E-03	0.01
Lead and compounds	7439-92-1				Lead is e	valuated us	sing the Lea	dSpread 8 mod	el (DTSC, 2	2011)			
Mercury, elemental	7439-97-6	1.6E-04	OEHHA	3.0E-05	OEHHA	7.5E-06			-	-		1.0.E-03	0.01
Molybdenum	7439-98-7	5.0E-03	IRIS	-		1			-	-		1.0.E-03	0.01
Nickel, soluble salts	7440-02-0	1.1E-02	OEHHA	1.4E-05	OEHHA	3.5E-06			2.6E-04	OEHHA	1.0E+00	2.0.E-04	0.01
Selenium	7782-49-2	5.0E-03	IRIS	2.0E-02	CalEPA	5.0E-03			-			1.0.E-03	0.01
Silver	7440-22-4	5.0E-03	IRIS	-		-			-			6.0.E-04	0.01
Thallium, soluble salts	7440-28-0	1.0E-05	PPRTV*	-		-			-			1.0.E-03	0.01
Vanadium and compounds	7440-62-2	5.0E-03	RSL	1.0E-04	ATSDR	2.5E-05			-			1.0.E-03	0.01
Zinc and compounds	7440-66-6	3.0E-01	IRIS	-		-			-			6.0.E-04	0.01
DRO (TPH aromatic medium)	E1790674	4.0E-03	PPRTV	3.0E-03	PPRTV	7.5E-04	-					6.9.E-02	0.1
ORO (TPH aliphatic low)	E1790672	2.0E+00	DTSC	8.0.E+00	DTSC	2.3E+00	-			-		2.0.E-01	0.1
Pentachlorophenol	87-86-5	5.0E-03	IRIS	-		-	4.0.E-01	IRIS	5.1E-06	CalEPA	2.0E-02	1.3.E-01	0.25
2,3,7,8-TCDD	1746-01-6	7.0E-10	IRIS	4.E-08	CalEPA	1.0E-08	1.3.E+05	CalEPA	3.8.E+01	CalEPA	1.5E+05	8.1.E-01	0.03

Notes:

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

ATSDR = Agency for Toxic Substances and Disease Registry

Conversions per Supplemental Guidance to RAGS: Region 4 Bulletins Human Health Risk Assessment (US EPA, November 1995), with updated body weight (DTSC, 2014)

DRO = diesel range organics

ORO = motor oil range organics

HEAST = US EPA Office of Research and Development, Health Effects Assessment Summary Tables

IRIS = US EPA Integrated Risk Information System (http://www.epa.gov/iris/)

IUR = inhalation unit risk

OEHHA = CalEPA Office of Environmental Health Hazard Assessment

PPRTV = Provisional Peer Reviewed Toxicity Values, US EPA OSWER Office of Superfund Remediation Technology Inovation (OSRTI)

RfCi = reference concentration for inhalation exposure

RfDi = reference dose for chronic inhalation exposure: RfDi [mg/kg-day] = RfCi [mg/m³] * (20 m³/day) * (80 kg)⁻¹

RfDo = reference dose for chronic oral exposure

RSL = USEPA Region IX RSL user guide Section 5: Value is based on IRIS oral RfD for Vanadium Pentoxide, factoring out the molecular weight (MW) of the oxide ion.

SFi = cancer slope factor for inhalation exposure: SFi $[(mg/kg-day)^{-1}]$ = IUR $[(ug/m^3)^{-1}]$ * $(10^3ug/mg)$ * (80 kg) * $(20m^3/day)^{-1}$.

SFo = cancer slope factor for oral exposure

TPH = total petroleum hydrocarbons

^{*} Appendix PPRTV Screen (see USEPA FAQ #27, http://www.epa.gov/region9/superfund/prg/)

Table 4a - Summary of Risk/Hazard Calculations for Standard Exposure Scenario (Unrestricted Land Use), All Detected Constituents, Entire Site

Mount Shasta, California

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
Antimony	UCL	4.0E-04	-			0.01	2.19	1.61E-09	7.20E-02		7.20E-02			0.00E+00
Arsenic	UCL	3.5E-06	3.8E-06	9.5E+00	1.3E+01	0.03	2.51	1.85E-09	6.30E+00	3.15E-04	6.30E+00	2.31E-05	3.00E-09	2.32E-05
Barium	UCL	2.0E-01	1.3E-04			0.01	231	1.70E-07	1.52E-02	8.69E-04	1.61E-02			0.00E+00
Beryllium	UCL	2.0E-04	1.8E-06		9.6E+00	0.01	0.79	5.81E-10	5.20E-02	2.12E-04	5.22E-02		6.88E-10	6.88E-10
Cadmium	UCL	6.3E-06	2.5E-06		7.2E+00	0.00	0.47	3.46E-10	8.95E-02	3.31E-05	8.96E-02		3.07E-10	3.07E-10
Chromium	UCL	1.5E+00	-		-	0.01	38.6	2.84E-08	3.39E-04		3.39E-04			0.00E+00
Cobalt	UCL	3.0E-04	1.5E-06		3.6E+01	0.01	6.99	5.14E-09	3.07E-01	2.19E-03	3.09E-01		2.28E-08	2.28E-08
Copper	UCL	4.0E-02	-		-	0.01	35.4	2.60E-08	1.16E-02		1.16E-02			0.00E+00
Mercury	UCL	1.6E-04	7.5E-06			0.01	0.92	6.76E-10	7.56E-02	8.35E-01	9.11E-01			0.00E+00
Molybdenum	Site Max	5.0E-03	-		-	0.01	1.2	8.82E-10	3.16E-03		3.16E-03			0.00E+00
Nickel	UCL	1.1E-02	3.5E-06		1.0E+00	0.01	41.4	3.04E-08	4.95E-02	5.56E-03	5.51E-02		3.90E-09	3.90E-09
Selenium	Site Max	5.0E-03	5.0E-03			0.01	2.3	1.69E-09	6.05E-03	2.16E-07	6.05E-03			0.00E+00
Silver	Site Max	5.0E-03	-		-	0.01	0.62	4.56E-10	1.63E-03		1.63E-03			0.00E+00
Thallium	Non Detect	1.0E-05				0.01		0.00E+00	0.00E+00		0.00E+00			0.00E+00
Vanadium	UCL	5.0E-03	2.5E-05			0.01	65.3	4.80E-08	1.72E-01	1.23E-03	1.73E-01			0.00E+00
Zinc	UCL	3.0E-01				0.01	44.0	3.24E-08	1.93E-03		1.93E-03			0.00E+00
DRO	UCL	4.0E-03	7.5E-04			0.10	1607	1.18E-06	6.63E+00	1.01E-03	6.63E+00			0.00E+00
ORO	UCL	2.0E+00	2.3E+00			0.10	1099	8.08E-07	9.06E-03	2.25E-07	9.06E-03			0.00E+00
PCP	UCL	5.0E-03	-	4.0E-01	2.0E-02	0.25	4.7	3.45E-09	2.07E-02		2.07E-02	4.38E-06	8.67E-12	4.38E-06
TEQ	UCL	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	9.32E-05	6.85E-14	1.85E+00	4.38E-06	1.85E+00	1.87E-05	1.28E-09	1.87E-05
TOTAL									1.57E+01	8.47E-01	1.7E+01	4.63E-05	3.20E-08	4.6E-05

Notes:

1 Cadmium hazard evaluated per HHRA Note 3 (DTSC, 2016) considering 26-year adult exposure

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca [mg/m³] = air concentration = Cs [mg/kg] * (PEF [m³/kg])⁻¹

Cs [mg/kg] = soil concentration

ND = not detected

NL = not listed in reviewed toxicological data sources

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

Parameter Value, child Value, adult Units Reference ATc, averaging time (carcinog 70 70 yr HERO HHRA Note No. 1 (DTSC, 2014) ATnc, averaging time (non-car 6 20 yr HERO HHRA Note No. 1 (DTSC, 2014) EFs, exposure frequency (inge 350 350 days/yr HERO HHRA Note No. 1 (DTSC, 2014) 350 EFd, exposure frequency (der 100 days/yr PEA Guidance Manual EFi, exposure frequency (inha 350 350 days/yr HERO HHRA Note No. 1 (DTSC, 2014) ED, exposure duration 6 20 yr HERO HHRA Note No. 1 (DTSC, 2014) ET, exposure time 24 24 hr/day HERO HHRA Note No. 3 (DTSC, 2016) IRs, soil ingestion rate 200 100 mg/day HERO HHRA Note No. 1 (DTSC, 2014) IRa, inhalation rate 10 20 m³/day HERO HHRA Note No. 1 (DTSC, 2014) BW, body weight 15 80 kg HERO HHRA Note No. 1 (DTSC, 2014) 6.032 cm² SA, exposed skin surface area 2.900 HERO HHRA Note No. 1 (DTSC, 2014) 0.2 0.07 mg/cm² AF, adherance factor HERO HHRA Note No. 1 (DTSC, 2014) PEF, particulate emission fact 1.360E+09 1.360E+09 m³/kg HERO HHRA Note No. 1 (DTSC, 2014) PEA Guidance Manual = Preliminary Endangermant Assessment Guidance Manual (DTSC, June 1999)

Site Max = maximum detected concentration Non Detect = constituent was not detected

Risk excluding Arsenic:

2.8E-08

Arsenic Risk: 2.3E-05

Hazard Index excluding arsenic: 1.7E+00

Arsenic Hazard Quotient: 6.3.E+00

Human-Exposure-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil (OEHHA, November 2004, revised January 2005) HERO Human Health Risk Assessment Note No. 1, Recommended DTSC Default Exposure Factors for Use in Risk Assessment, DTSC, September 30, 2014.

Table 4b - Summary of Risk/Hazard Calculations for Standard Exposure Scenario (Unrestricted Land Use), COCs, Log Pond Area

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
DRO	UCL	4.0E-03	7.5E-04	-		0.10	297	2.18E-07	1.22E+00	1.86E-04	1.22E+00			0.00E+00
ORO	UCL	2.0E+00	2.3E+00			0.10	118	8.68E-08	9.73E-04	2.41E-08	9.73E-04			0.00E+00
PCP	Non Detect	5.0E-03		4.0E-01	2.0E-02	0.25		0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
TEQ	Max	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	1.42E-04	1.04E-13	2.82E+00	6.67E-06	2.82E+00	2.85E-05	1.96E-09	2.85E-05
TOTAL									4.04E+00	1.93E-04	4.0E+00	2.85E-05	1.96E-09	2.9E-05

Hazard Index excluding TEQ: 1.2E+00

TEQ Hazard Quotient: 2.8.E+00

Risk excluding TEQ: 0.0E+00

TEQ Risk: 2.9.E-05

Notes:

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca [mg/m 3] = air concentration = Cs [mg/kg] * (PEF [m 3 /kg]) $^{-1}$

Cs [mg/kg] = soil concentration

ND = not detected

NL = not listed in reviewed toxicological data sources

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

11			
<u>Parameter</u>	Value, child	Value, adult Units	Reference
ATc, averaging time (carcinoge	70	70 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-car	6	20 yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (inge	350	350 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (deri	350	100 days/yr	PEA Guidance Manual
EFi, exposure frequency (inhal	350	350 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration	6	20 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time	24	24 hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate	200	100 mg/day	HERO HHRA Note No. 1 (DTSC, 2014)
IRa, inhalation rate	10	20 m³/day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight	15	80 kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface area	2,900	6,032 cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
AF, adherance factor	0.2	0.07 mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission factor	1.360E+09	1.360E+09 m ³ /kg	HERO HHRA Note No. 1 (DTSC, 2014)

PEA Guidance Manual = Preliminary Endangermant Assessment Guidance Manual (DTSC, June 1999)

Human-Exposure-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil (OEHHA, November 2004, revised January 2005)

Table 4c - Summary of Risk/Hazard Calculations for Standard Exposure Scenario (Unrestricted Land Use), COCs, Dip Tank and Transfer Pit Area

Mount Shasta, California

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
Mercury	UCL	1.6E-04	7.5E-06			0.01	2.32	1.71E-09	1.91E-01	2.11E+00	2.30E+00			0.00E+00
DRO	UCL	4.0E-03	7.5E-04			0.10	10679	7.85E-06	4.40E+01	6.69E-03	4.40E+01			0.00E+00
ORO	UCL	2.0E+00	2.3E+00		-	0.10	122	8.97E-08	1.01E-03	2.49E-08	1.01E-03			0.00E+00
PCP	UCL	5.0E-03		4.0E-01	2.0E-02	0.25	24.4	1.79E-08	1.08E-01		1.08E-01	2.28E-05	4.51E-11	2.28E-05
TEQ	Max	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	7.80E-05	5.74E-14	1.55E+00	3.67E-06	1.55E+00	1.57E-05	1.07E-09	1.57E-05
TOTAL									4.59E+01	2.11E+00	4.8E+01	3.85E-05	1.12E-09	3.8E-05

Hazard Index excluding TEQ: 4.6E+01

TEQ Hazard Quotient: 1.5.E+00

Risk excluding TEQ:

2.3E-05

TEQ Risk: 1.6.E-05

Notes:

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca [mg/m³] = air concentration = Cs [mg/kg] * (PEF [m³/kg])⁻¹

Cs [mg/kg] = soil concentration

ND = not detected

NL = not listed in reviewed toxicological data sources

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

<u>Parameter</u>	Value, child	Value, adult Units	Reference
ATc, averaging time (carcinoge	70	70 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-car	6	20 yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (inge	350	350 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (deri	350	100 days/yr	PEA Guidance Manual
EFi, exposure frequency (inhal	350	350 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration	6	20 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time	24	24 hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate	200	100 mg/day	HERO HHRA Note No. 1 (DTSC, 2014)
IRa, inhalation rate	10	20 m³/day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight	15	80 kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface area	2,900	6,032 cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
AF, adherance factor	0.2	0.07 mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission factor	1.360E+09	1.360E+09 m ³ /kg	HERO HHRA Note No. 1 (DTSC, 2014)

PEA Guidance Manual = Preliminary Endangermant Assessment Guidance Manual (DTSC, June 1999)

Human-Exposure-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil (OEHHA, November 2004, revised January 2005)

Table 4d - Summary of Risk/Hazard Calculations for Standard Exposure Scenario (Unrestricted Land Use), COCs, Boiler Room Area

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
DRO	UCL	4.0E-03	7.5E-04			0.10	540	3.97E-07	2.23E+00	3.38E-04	2.23E+00			0.00E+00
ORO	UCL	2.0E+00	2.3E+00			0.10	1545	1.14E-06	1.27E-02	3.16E-07	1.27E-02			0.00E+00
PCP	Non Detect	5.0E-03		4.0E-01	2.0E-02	0.25		0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
TEQ	Max	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	9.59E-05	7.05E-14	1.90E+00	4.51E-06	1.90E+00	1.93E-05	1.32E-09	1.93E-05
TOTAL									4.14E+00	3.43E-04	4.1E+00	1.93E-05	1.32E-09	1.9E-05

Hazard Index excluding TEQ: 2.2E+00

TEQ Hazard Quotient: 1.9.E+00

Risk excluding TEQ: 0.0E+00

TEQ Risk: 1.9.E-05

Notes:

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca [mg/m 3] = air concentration = Cs [mg/kg] * (PEF [m 3 /kg]) $^{-1}$

Cs [mg/kg] = soil concentration

ND = not detected

NL = not listed in reviewed toxicological data sources

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

<u>Parameter</u>	Value, child	Value, adult <u>Units</u>	Reference
ATc, averaging time (carcinoge	70	70 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-car	6	20 yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (inge	350	350 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (deri	350	100 days/yr	PEA Guidance Manual
EFi, exposure frequency (inhal	350	350 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration	6	20 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time	24	24 hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate	200	100 mg/day	HERO HHRA Note No. 1 (DTSC, 2014)
IRa, inhalation rate	10	20 m³/day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight	15	80 kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface area	2,900	6,032 cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
AF, adherance factor	0.2	0.07 mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission factor	1.360E+09	1.360E+09 m ³ /kg	HERO HHRA Note No. 1 (DTSC, 2014)

PEA Guidance Manual = Preliminary Endangermant Assessment Guidance Manual (DTSC, June 1999)

Human-Exposure-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil (OEHHA, November 2004, revised January 2005)

Table 4e - Summary of Risk/Hazard Calculations for Standard Exposure Scenario (Unrestricted Land Use), COCs, Refuse Burner Area

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
DRO	UCL	4.0E-03	7.5E-04			0.10	497	3.65E-07	2.05E+00	3.11E-04	2.05E+00			0.00E+00
ORO	UCL	2.0E+00	2.3E+00			0.10	2226	1.64E-06	1.84E-02	4.55E-07	1.84E-02			0.00E+00
PCP	Non Detect	5.0E-03		4.0E-01	2.0E-02	0.25		0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
TEQ	UCL	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	9.13E-05	6.71E-14	1.81E+00	4.29E-06	1.81E+00	1.84E-05	1.26E-09	1.84E-05
TOTAL									3.88E+00	3.16E-04	3.9E+00	1.84E-05	1.26E-09	1.8E-05

Hazard Index excluding TEQ: 2.1E+00

TEQ Hazard Quotient: 1.8.E+00

Risk excluding TEQ: 0.0E+00

TEQ Risk: 1.8.E-05

Notes:

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca [mg/m 3] = air concentration = Cs [mg/kg] * (PEF [m 3 /kg]) $^{-1}$

Cs [mg/kg] = soil concentration

ND = not detected

NL = not listed in reviewed toxicological data sources

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

11			
<u>Parameter</u>	Value, child	Value, adult Units	Reference
ATc, averaging time (carcinoge	70	70 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-car	6	20 yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (inge	350	350 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (deri	350	100 days/yr	PEA Guidance Manual
EFi, exposure frequency (inhal	350	350 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration	6	20 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time	24	24 hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate	200	100 mg/day	HERO HHRA Note No. 1 (DTSC, 2014)
IRa, inhalation rate	10	20 m³/day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight	15	80 kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface area	2,900	6,032 cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
AF, adherance factor	0.2	0.07 mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission factor	1.360E+09	1.360E+09 m ³ /kg	HERO HHRA Note No. 1 (DTSC, 2014)

PEA Guidance Manual = Preliminary Endangermant Assessment Guidance Manual (DTSC, June 1999)

Human-Exposure-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil (OEHHA, November 2004, revised January 2005)

Table 5a - Summary of Risk/Hazard Calculations for Industrial Land Use, COCs, Log Pond Area

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
DRO	UCL	4.0E-03	7.5E-04			0.10	297	2.18E-07	1.40E-01	3.49E-05	1.40E-01			0.00E+00
ORO	UCL	2.0E+00	2.3E+00	-		0.10	118	8.68E-08	1.11E-04	4.52E-09	1.11E-04			0.00E+00
PCP	Non Detect	5.0E-03		4.0E-01	2.0E-02	0.25		0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
TEQ	Max	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	1.42E-04	1.04E-13	2.37E-01	1.25E-06	2.37E-01	7.69E-06	6.79E-10	7.69E-06
TOTAL									3.77E-01	3.62E-05	3.77E-01	7.69E-06	6.79E-10	7.69E-06

Notes:

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Hazard Index excluding TEQ: 1.4E-01 Risk excluding TEQ: 0.0E+00

TEQ Hazard Quotient: 2.4.E-01 TEQ Risk: 7.7.E-06

Ca [mg/m³] = air concentration = Cs [mg/kg] * (PEF [m³/kg])⁻¹

Cs [mg/kg] = soil concentration

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

Max = maximum detected concentration Non Detect = constituent was not detected

<u>Parameter</u>	Value, child	Value, adult <u>Units</u>	Reference
ATc, averaging time (carcino		70 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-c		25 yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (in		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (d		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFi, exposure frequency (inl		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration		25 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time		8 hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate		100 mg/day	USEPA Supplemental Guidance
IRa, inhalation rate		14 m³/day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight		80 kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface ar		$6,032 \text{ cm}^2$	USEPA Risk Assessment Guidance
AF, adherance factor		0.2 mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission fa		1.36E+09 m ³ /kg	HERO HHRA Note No. 1 (DTSC, 2014)
USEPA Exposure Factors H	andbook (EPA	V/600/P-95/002Fa)	

USEPA Risk Assessment Guidance for Superfund (RAGS), Part E, Chapter 3 and Appendix C (2004)

USEPA Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (OSWER 9355.4-24) December 2002.

HERO Human Health Risk Assessment Note No. 1, Recommended DTSC Default Exposure Factors for Use in Risk Assessment, DTSC, September 30, 2014.

Table 5b - Summary of Risk/Hazard Calculations for Industrial Land Use, COCs, Dip Tank and Transfer Pit Area

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
Mercury	UCL	1.6E-04	7.5E-06			0.01	2.32	1.71E-09	1.39E-02	5.02E-01	5.15E-01			0.00E+00
DRO	UCL	4.0E-03	7.5E-04			0.10	10679	7.85E-06	5.04E+00	1.25E-03	5.04E+00			0.00E+00
ORO	UCL	2.0E+00	2.3E+00		-	0.10	122	8.97E-08	1.15E-04	4.67E-09	1.15E-04			0.00E+00
PCP	UCL	5.0E-03		4.0E-01	2.0E-02	0.25	24.4	1.79E-08	1.68E-02		1.68E-02	1.20E-05	1.57E-11	1.20E-05
TEQ	Max	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	7.80E-05	5.74E-14	1.30E-01	6.87E-07	1.30E-01	4.22E-06	3.73E-10	4.22E-06
TOTAL									5.20E+00	5.03E-01	5.71E+00	1.62E-05	3.89E-10	1.62E-05

Notes:

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca $[mg/m^3]$ = air concentration = Cs $[mg/kg] * (PEF [m^3/kg])^{-1}$

Cs [mg/kg] = soil concentration

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

Max = maximum detected concentration
Non Detect = constituent was not detected

Hazard Index excluding TEQ: 5.6E+00

TEQ Hazard Quotient: 1.3.E-01

<u>Parameter</u>	Value, child Va	alue, adult <u>Units</u>	<u>Reference</u>
ATc, averaging time (carcing		70 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-c		25 yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (in		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (d		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFi, exposure frequency (inl		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration		25 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time		8 hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate		100 mg/day	USEPA Supplemental Guidance
IRa, inhalation rate		14 m ³ /day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight		80 kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface ar		6,032 cm ²	USEPA Risk Assessment Guidance
AF, adherance factor		0.2 mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission fa		1.36E+09 m ³ /kg	HERO HHRA Note No. 1 (DTSC, 2014)
USEPA Exposure Factors H	andbook (EPA/6	600/P-95/002Fa)	

oce / Exposure ractors riandbook (El / vodo/i -50/0021 a)

USEPA Risk Assessment Guidance for Superfund (RAGS), Part E, Chapter 3 and Appendix C (2004)

USEPA Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (OSWER 9355.4-24) December 2002.

HERO Human Health Risk Assessment Note No. 1, Recommended DTSC Default Exposure Factors for Use in Risk Assessment, DTSC, September 30, 2014.

PEA Guidance Manual = Preliminary Endangermant Assessment Guidance Manual (DTSC, October 2015)

Risk excluding TEQ: 1.2E-05

TEQ Risk: 4.2.E-06

Table 5c - Summary of Risk/Hazard Calculations for Industrial Land Use, COCs, Boiler Rooom Area

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
DRO	UCL	4.0E-03	7.5E-04			0.10	540	3.97E-07	2.55E-01	6.35E-05	2.55E-01			0.00E+00
ORO	UCL	2.0E+00	2.3E+00	-		0.10	1545	1.14E-06	1.46E-03	5.92E-08	1.46E-03			0.00E+00
PCP	Non Detect	5.0E-03		4.0E-01	2.0E-02	0.25		0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
TEQ	Max	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	9.59E-05	7.05E-14	1.60E-01	8.45E-07	1.60E-01	5.19E-06	4.59E-10	5.19E-06
TOTAL					·			·	4.16E-01	6.44E-05	4.16E-01	5.19E-06	4.59E-10	5.19E-06

Notes:

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Hazard Index excluding TEQ: 2.6E-01 Risk excluding TEQ: 0.0E+00 TEQ Hazard Quotient: 1.6.E-01 TEQ Risk: 5.2.E-06

Ca [mg/m³] = air concentration = Cs [mg/kg] * (PEF [m³/kg])⁻¹

Cs [mg/kg] = soil concentration

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

Max = maximum detected concentration
Non Detect = constituent was not detected

<u>Parameter</u>	Value, child V	/alue, adult <u>Units</u>	<u>Reference</u>
ATc, averaging time (carcino		70 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-c		25 yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (in		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (d		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFi, exposure frequency (inl		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration		25 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time		8 hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate		100 mg/day	USEPA Supplemental Guidance
IRa, inhalation rate		14 m³/day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight		80 kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface ar		6,032 cm ²	USEPA Risk Assessment Guidance
AF, adherance factor		0.2 mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission fa		1.36E+09 m ³ /kg	HERO HHRA Note No. 1 (DTSC, 2014)
USEPA Exposure Factors H	andbook (EPA	/600/P-95/002Fa)	

USEPA Risk Assessment Guidance for Superfund (RAGS), Part E, Chapter 3 and Appendix C (2004)

USEPA Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (OSWER 9355.4-24) December 2002.

HERO Human Health Risk Assessment Note No. 1, Recommended DTSC Default Exposure Factors for Use in Risk Assessment, DTSC, September 30, 2014.

Table 5d - Summary of Risk/Hazard Calculations for Industrial Land Use, COCs, Refuse Burner Area

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
DRO	UCL	4.0E-03	7.5E-04			0.10	497	3.65E-07	2.35E-01	5.84E-05	2.35E-01			0.00E+00
ORO	UCL	2.0E+00	2.3E+00			0.10	2226	1.64E-06	2.10E-03	8.53E-08	2.10E-03			0.00E+00
PCP	Non Detect	5.0E-03		4.0E-01	2.0E-02	0.25		0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
TEQ	UCL	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	9.13E-05	6.71E-14	1.52E-01	8.05E-07	1.52E-01	4.94E-06	4.37E-10	4.94E-06
TOTAL									3.89E-01	5.93E-05	3.89E-01	4.94E-06	4.37E-10	4.94E-06

Notes:

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca [mg/m³] = air concentration = Cs [mg/kg] * (PEF [m³/kg])⁻¹

Cs [mg/kg] = soil concentration

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

Parameter Value, child Value, adult Units Reference ATc, averaging time (carcing 70 yr HERO HHRA Note No. 1 (DTSC, 2014) ATnc, averaging time (non-c 25 yr HERO HHRA Note No. 1 (DTSC, 2014) EFs, exposure frequency (in 250 days/yr HERO HHRA Note No. 1 (DTSC, 2014) EFd, exposure frequency (d 250 days/yr HERO HHRA Note No. 1 (DTSC, 2014) EFi, exposure frequency (inl 250 davs/vr HERO HHRA Note No. 1 (DTSC, 2014) ED. exposure duration 25 yr HERO HHRA Note No. 1 (DTSC. 2014) ET, exposure time 8 hr/day HERO HHRA Note No. 3 (DTSC, 2016) IRs, soil ingestion rate 100 mg/day **USEPA Supplemental Guidance** IRa, inhalation rate 14 m³/day HERO HHRA Note No. 1 (DTSC, 2014) BW, body weight 80 kg HERO HHRA Note No. 1 (DTSC, 2014) 6.032 cm² SA, exposed skin surface ar **USEPA Risk Assessment Guidance** AF, adherance factor 0.2 mg/cm² HERO HHRA Note No. 1 (DTSC, 2014) PEF, particulate emission fa $1.36E+09 \text{ m}^3/\text{kg}$ HERO HHRA Note No. 1 (DTSC, 2014) USEPA Exposure Factors Handbook (EPA/600/P-95/002Fa)

USEPA Risk Assessment Guidance for Superfund (RAGS), Part E, Chapter 3 and Appendix C (2004)

USEPA Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (OSWER 9355.4-24) December 2002.

HERO Human Health Risk Assessment Note No. 1, Recommended DTSC Default Exposure Factors for Use in Risk Assessment, DTSC, September 30, 2014.

PEA Guidance Manual = Preliminary Endangermant Assessment Guidance Manual (DTSC, October 2015)

Max = maximum detected concentration
Non Detect = constituent was not detected

Risk excluding TEQ:

0.0E+00

TEQ Risk: 4.9.E-06

Hazard Index excluding TEQ: 2.4E-01

TEQ Hazard Quotient: 1.5.E-01

Table 6a - Summary of Risk/Hazard Calculations for Indoor Commercial Scenario, COCs, Log Pond Area

The Landing - Old Mill Section Mount Shasta, California

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
DRO	UCL	4.0E-03	7.5E-04			0.10	297	2.18E-07	7.37E-02	3.49E-05	7.38E-02			0.00E+00
ORO	UCL	2.0E+00	2.3E+00			0.10	118	8.68E-08	5.86E-05	4.52E-09	5.86E-05			0.00E+00
PCP	Non Detect	5.0E-03		4.0E-01	2.0E-02	0.25		0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
TEQ	Max	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	1.42E-04	1.04E-13	1.21E-01	1.25E-06	1.21E-01	3.94E-06	6.79E-10	3.94E-06
TOTAL									1.95E-01	3.62E-05	1.95E-01	3.94E-06	6.79E-10	3.94E-06

Notes:

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca [mg/m³] = air concentration = Cs [mg/kg] * (PEF [m³/kg])⁻¹

Cs [mg/kg] = soil concentration

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

Max = maximum detected concentration Non Detect = constituent was not detected

Risk excluding TEQ: 0.0E+00

TEQ Risk: 3.9.E-06

3/5/2018

Hazard Index excluding TEQ: 7.4E-02

TEQ Hazard Quotient: 1.2.E-01

Parameter \	Value, child	Value, adult Units	<u>Reference</u>
ATc, averaging time (carcino		70 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-c		25 yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (in		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (d		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFi, exposure frequency (inl		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration		25 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time		8 hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate		50 mg/day	USEPA Supplemental Guidance
IRa, inhalation rate		14 m³/day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight		80 kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface ar		3,300 cm ²	USEPA Risk Assessment Guidance
AF, adherance factor		0.2 mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission fa		1.36E+09 m ³ /kg	HERO HHRA Note No. 1 (DTSC, 2014)
USEPA Exposure Factors Ha	ndhook (FP	A/600/P-95/002Fa)	

USEPA Exposure Factors Handbook (EPA/600/P-95/002Fa)

USEPA Risk Assessment Guidance for Superfund (RAGS), Part E, Chapter 3 and Appendix C (2004)

USEPA Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (OSWER 9355.4-24) December 2002.

HERO Human Health Risk Assessment Note No. 1, Recommended DTSC Default Exposure Factors for Use in Risk Assessment, DTSC, September 30, 2014.

Table 6b - Summary of Risk/Hazard Calculations for Indoor Commercial Scenario, COCs, Dip Tank and Transfer Pit Area

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
Mercury	UCL	1.6E-04	7.5E-06			0.01	2.32	1.71E-09	7.03E-03	5.02E-01	5.09E-01			0.00E+00
DRO	UCL	4.0E-03	7.5E-04	-		0.10	10679	7.85E-06	2.65E+00	1.25E-03	2.65E+00			0.00E+00
ORO	UCL	2.0E+00	2.3E+00			0.10	122	8.97E-08	6.06E-05	4.67E-09	6.06E-05			0.00E+00
PCP	UCL	5.0E-03		4.0E-01	2.0E-02	0.25	24.4	1.79E-08	8.98E-03		8.98E-03	6.42E-06	1.57E-11	6.42E-06
TEQ	Max	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	7.80E-05	5.74E-14	6.66E-02	6.87E-07	6.66E-02	2.16E-06	3.73E-10	2.16E-06
TOTAL									2.73E+00	5.03E-01	3.24E+00	8.58E-06	3.89E-10	8.58E-06

Notes:

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca [mg/m³] = air concentration = Cs [mg/kg] * (PEF [m³/kg])⁻¹

Cs [mg/kg] = soil concentration

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

Max = maximum detected concentration
Non Detect = constituent was not detected

Risk excluding TEQ: 6.4E-06

TEQ Risk: 2.2.E-06

Hazard Index excluding TEQ: 3.2E+00

TEQ Hazard Quotient: 6.7.E-02

<u>Parameter</u>	<u>Value, child</u>	Value, adult Units	<u>Reference</u>
ATc, averaging time (carcing		70 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-c		25 yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (in		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (d		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFi, exposure frequency (inl		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration		25 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time		8 hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate		50 mg/day	USEPA Supplemental Guidance
IRa, inhalation rate		14 m³/day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight		80 kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface ar		3,300 cm ²	USEPA Risk Assessment Guidance
AF, adherance factor		0.2 mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission fa		1.36E+09 m ³ /kg	HERO HHRA Note No. 1 (DTSC, 2014)
USEPA Exposure Factors H	andbook (EP	A/600/P-95/002Fa)	

USEPA Risk Assessment Guidance for Superfund (RAGS), Part E, Chapter 3 and Appendix C (2004)

USEPA Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (OSWER 9355.4-24) December 2002.

HERO Human Health Risk Assessment Note No. 1, Recommended DTSC Default Exposure Factors for Use in Risk Assessment, DTSC, September 30, 2014.

Table 6c - Summary of Risk/Hazard Calculations for Indoor Commercial Scenario, COCs, Boiler Room Area

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
DRO	UCL	4.0E-03	7.5E-04	-		0.10	540	3.97E-07	1.34E-01	6.35E-05	1.34E-01			0.00E+00
ORO	UCL	2.0E+00	2.3E+00	-		0.10	1545	1.14E-06	7.67E-04	5.92E-08	7.67E-04			0.00E+00
PCP	Non Detect	5.0E-03		4.0E-01	2.0E-02	0.25		0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
TEQ	Max	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	9.59E-05	7.05E-14	8.19E-02	8.45E-07	8.19E-02	2.66E-06	4.59E-10	2.66E-06
TOTAL									2.17E-01	6.44E-05	2.17E-01	2.66E-06	4.59E-10	2.66E-06

Notes:

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca [mg/m³] = air concentration = Cs [mg/kg] * (PEF [m³/kg])⁻¹

Cs [mg/kg] = soil concentration

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

Max = maximum detected concentration Non Detect = constituent was not detected

Hazard Index excluding TEQ: 1.3E-01

TEQ Hazard Quotient: 8.2.E-02

<u>Parameter</u>	Value, child \	/alue, adult <u>Units</u>	<u>Reference</u>
ATc, averaging time (carcing		70 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-c		25 yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (in		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (d		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFi, exposure frequency (inl		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration		25 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time		8 hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate		50 mg/day	USEPA Supplemental Guidance
IRa, inhalation rate		14 m³/day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight		80 kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface ar		$3,300 \text{ cm}^2$	USEPA Risk Assessment Guidance
AF, adherance factor		0.2 mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission fa		1.36E+09 m ³ /kg	HERO HHRA Note No. 1 (DTSC, 2014)
USEPA Exposure Factors H	andhook (FPA	/600/P-95/002Fa)	

USEPA Exposure Factors Handbook (EPA/600/P-95/002Fa)

USEPA Risk Assessment Guidance for Superfund (RAGS), Part E, Chapter 3 and Appendix C (2004)

USEPA Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (OSWER 9355.4-24) December 2002.

HERO Human Health Risk Assessment Note No. 1, Recommended DTSC Default Exposure Factors for Use in Risk Assessment, DTSC, September 30, 2014.

PEA Guidance Manual = Preliminary Endangermant Assessment Guidance Manual (DTSC, October 2015)

Risk excluding TEQ: 0.0E+00

TEQ Risk: 2.7.E-06

Table 6d - Summary of Risk/Hazard Calculations for Indoor Commercial Scenario, COCs, Refuse Burner Area

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
DRO	UCL	4.0E-03	7.5E-04		-	0.10	497	3.65E-07	1.23E-01	5.84E-05	1.23E-01			0.00E+00
ORO	UCL	2.0E+00	2.3E+00		-	0.10	2226	1.64E-06	1.11E-03	8.53E-08	1.11E-03			0.00E+00
PCP	Non Detect	5.0E-03		4.0E-01	2.0E-02	0.25		0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
TEQ	UCL	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	9.13E-05	6.71E-14	7.79E-02	8.05E-07	7.79E-02	2.53E-06	4.37E-10	2.53E-06
TOTAL									2.02E-01	5.93E-05	2.03E-01	2.53E-06	4.37E-10	2.53E-06

Notes:

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca $[mg/m^3]$ = air concentration = Cs $[mg/kg] * (PEF [m^3/kg])^{-1}$

Cs [mg/kg] = soil concentration

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

Max = maximum detected concentration Non Detect = constituent was not detected

Risk excluding TEQ: 0.0E+00

TEQ Risk: 2.5.E-06

Hazard Index excluding TEQ: 1.2E-01

TEQ Hazard Quotient: 7.8.E-02

<u>Parameter</u>	Value, child	Value, adult	<u>Units</u>	Reference
ATc, averaging time (carcing		70	yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-c		25	yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (in		250	days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (d		250	days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFi, exposure frequency (inl		250	days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration		25	yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time		8	hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate			mg/day	USEPA Supplemental Guidance
IRa, inhalation rate		14	m³/day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight		80	kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface ar		3,300	cm ²	USEPA Risk Assessment Guidance
AF, adherance factor		0.2	mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission fa		1.36E+09	m³/kg	HERO HHRA Note No. 1 (DTSC, 2014)
USEPA Exposure Factors H	andbook (EP	A/600/P-95/0	02Fa)	

USEPA Risk Assessment Guidance for Superfund (RAGS), Part E, Chapter 3 and Appendix C (2004)

USEPA Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (OSWER 9355.4-24) December 2002.

HERO Human Health Risk Assessment Note No. 1, Recommended DTSC Default Exposure Factors for Use in Risk Assessment, DTSC, September 30, 2014.

Table 7a - Summary of Risk/Hazard Calculations for Child and Adult Recreational Exposure Scenario, COCs, Log Pond Area

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
DRO	UCL	4.0E-03	7.5E-04		-	0.10	297	2.18E-07	5.25E-01	2.66E-05	5.25E-01			0.00E+00
ORO	UCL	2.0E+00	2.3E+00			0.10	118	8.68E-08	4.17E-04	3.45E-09	4.17E-04			0.00E+00
PCP	Non Detect	5.0E-03		4.0E-01	2.0E-02	0.25		0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
TEQ	Max	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	1.42E-04	1.04E-13	1.21E+00	9.54E-07	1.21E+00	1.24E-05	2.80E-10	1.24E-05
TOTAL									1.73E+00	2.75E-05	1.7E+00	1.24E-05	2.80E-10	1.2E-05

Notes:

1 Cadmium hazard evaluated per HHRA Note 3 (DTSC, 2016) considering 26-year adult exposure

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca [mg/m³] = air concentration = Cs [mg/kg] * (PEF [m³/kg])⁻¹

Cs [mg/kg] = soil concentration

ND = not detected

NL = not listed in reviewed toxicological data sources

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

Max = maximum detected concentration Non Detect = constituent was not detected

Risk excluding TEQ: 0.0E+00

TEQ Risk: 1.2.E-05

Hazard Index excluding TEQ: 5.3E-01

TEQ Hazard Quotient: 1.2.E+00

<u>Parameter</u>	Value, child	Value, adult Units	Reference
ATc, averaging time (carcinogen)	70	70 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-carcinogen)	6	20 yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (ingestion)	150	150 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (dermal)	150	100 days/yr	PEA Guidance Manual
EFi, exposure frequency (inhalation)	150	150 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration	6	20 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time	8	8 hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate	200	100 mg/day	HERO HHRA Note No. 1 (DTSC, 2014)
IRa, inhalation rate	10	20 m³/day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight	15	80 kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface area	2,900	6,032 cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
AF, adherance factor	0.2	0.07 mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission factor	1.360E+09	1.360E+09 m ³ /kg	HERO HHRA Note No. 1 (DTSC, 2014)

PEA Guidance Manual = Preliminary Endangermant Assessment Guidance Manual (DTSC, June 1999)

Human-Exposure-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil (OEHHA, November 2004, revised January 2005)

Table 7b - Summary of Risk/Hazard Calculations for Child and Adult Recreational Exposure Scenario, COCs, Dip Tank and Transfer Pit Area

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
Mercury	UCL	1.6E-04	7.5E-06		-	0.01	2.32	1.71E-09	8.18E-02	2.08E-05	8.18E-02			0.00E+00
DRO	UCL	4.0E-03	7.5E-04			0.10	10679	7.85E-06	1.89E+01	9.56E-04	1.89E+01			0.00E+00
ORO	UCL	2.0E+00	2.3E+00			0.10	122	8.97E-08	4.31E-04	3.56E-09	4.31E-04			0.00E+00
PCP	UCL	5.0E-03		4.0E-01	2.0E-02	0.25	24.4	1.79E-08	4.61E-02		4.61E-02	1.03E-05	6.45E-12	1.03E-05
TEQ	Max	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	7.80E-05	5.74E-14	6.64E-01	5.24E-07	6.64E-01	6.79E-06	1.54E-10	6.79E-06
TOTAL									1.97E+01	9.77E-04	2.0E+01	1.71E-05	1.60E-10	1.7E-05

Notes:

1 Cadmium hazard evaluated per HHRA Note 3 (DTSC, 2016) considering 26-year adult exposure

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca [mg/m³] = air concentration = Cs [mg/kg] * (PEF [m³/kg])⁻¹

Cs [mg/kg] = soil concentration

ND = not detected

NL = not listed in reviewed toxicological data sources

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

Max = maximum detected concentration

Non Detect = constituent was not detected

Risk excluding TEQ: 1.0E-05

TEQ Risk: 6.8.E-06

Hazard Index excluding TEQ: 1.9E+01

TEQ Hazard Quotient: 6.6.E-01

11			
<u>Parameter</u>	Value, child	Value, adult Units	<u>Reference</u>
ATc, averaging time (carcinogen)	70	70 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-carcinogen)	6	20 yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (ingestion)	150	150 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (dermal)	150	100 days/yr	PEA Guidance Manual
EFi, exposure frequency (inhalation)	150	150 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration	6	20 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time	8	8 hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate	200	100 mg/day	HERO HHRA Note No. 1 (DTSC, 2014)
IRa, inhalation rate	10	20 m³/day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight	15	80 kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface area	2,900	6,032 cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
AF, adherance factor	0.2	0.07 mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission factor	1.360E+09	1.360E+09 m ³ /kg	HERO HHRA Note No. 1 (DTSC, 2014)
			1/0700 1 1000)

PEA Guidance Manual = Preliminary Endangermant Assessment Guidance Manual (DTSC, June 1999)

Human-Exposure-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil (OEHHA, November 2004, revised January 2005)

Table 7c - Summary of Risk/Hazard Calculations for Child and Adult Recreational Exposure Scenario, COCs, Boiler Room Area

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
DRO	UCL	4.0E-03	7.5E-04		-	0.10	540	3.97E-07	9.54E-01	4.83E-05	9.54E-01			0.00E+00
ORO	UCL	2.0E+00	2.3E+00			0.10	1545	1.14E-06	5.46E-03	4.51E-08	5.46E-03			0.00E+00
PCP	Non Detect	5.0E-03		4.0E-01	2.0E-02	0.25		0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
TEQ	Max	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	9.59E-05	7.05E-14	8.16E-01	6.44E-07	8.16E-01	8.35E-06	1.89E-10	8.35E-06
TOTAL									1.78E+00	4.90E-05	1.8E+00	8.35E-06	1.89E-10	8.3E-06

Notes:

1 Cadmium hazard evaluated per HHRA Note 3 (DTSC, 2016) considering 26-year adult exposure

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca $[mg/m^3]$ = air concentration = Cs $[mg/kg] * (PEF [m^3/kg])^{-1}$

Cs [mg/kg] = soil concentration

ND = not detected

NL = not listed in reviewed toxicological data sources

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

Max = maximum detected concentration
Non Detect = constituent was not detected

Risk excluding TEQ: 0.0E+00

TEQ Risk: 8.3.E-06

Hazard Index excluding TEQ: 9.6E-01

TEQ Hazard Quotient: 8.2.E-01

<u>Parameter</u>	Value, child	Value, adult <u>Units</u>	Reference
ATc, averaging time (carcinogen)	70	70 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-carcinogen)	6	20 yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (ingestion)	150	150 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (dermal)	150	100 days/yr	PEA Guidance Manual
EFi, exposure frequency (inhalation)	150	150 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration	6	20 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time	8	8 hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate	200	100 mg/day	HERO HHRA Note No. 1 (DTSC, 2014)
IRa, inhalation rate	10	20 m³/day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight	15	80 kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface area	2,900	6,032 cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
AF, adherance factor	0.2	0.07 mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission factor	1.360E+09	1.360E+09 m ³ /kg	HERO HHRA Note No. 1 (DTSC, 2014)
DEA Outdones Manuel - Bustinsin and Fund	.	M-	

PEA Guidance Manual = Preliminary Endangermant Assessment Guidance Manual (DTSC, June 1999)

Human-Exposure-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil (OEHHA, November 2004, revised January 2005)

HERO Human Health Risk Assessment Note No. 1, Recommended DTSC Default Exposure Factors for Use in Risk Assessment, DTSC, September 30, 2014.

Table 7d - Summary of Risk/Hazard Calculations for Child and Adult Recreational Exposure Scenario, COCs, Refuse Burner Area

The Landing - Old Mill Section

Mount Shasta, California

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
DRO	UCL	4.0E-03	7.5E-04			0.10	497	3.65E-07	8.78E-01	4.45E-05	8.78E-01			0.00E+00
ORO	UCL	2.0E+00	2.3E+00			0.10	2226	1.64E-06	7.87E-03	6.50E-08	7.87E-03			0.00E+00
PCP	Non Detect	5.0E-03		4.0E-01	2.0E-02	0.25		0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
TEQ	UCL	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	9.13E-05	6.71E-14	7.77E-01	6.13E-07	7.77E-01	7.95E-06	1.80E-10	7.95E-06
TOTAL									1.66E+00	4.52E-05	1.7E+00	7.95E-06	1.80E-10	7.9E-06

Notes:

1 Cadmium hazard evaluated per HHRA Note 3 (DTSC, 2016) considering 26-year adult exposure

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca [mg/m³] = air concentration = Cs [mg/kg] * (PEF [m³/kg])⁻¹

Cs [mg/kg] = soil concentration

ND = not detected

NL = not listed in reviewed toxicological data sources

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

Max = maximum detected concentration Non Detect = constituent was not detected

Risk excluding TEQ: 0.0E+00

TEQ Risk: 7.9.E-06

Hazard Index excluding TEQ: 8.9E-01

TEQ Hazard Quotient: 7.8.E-01

• • • • • • • • • • • • • • • • • • • •			
<u>Parameter</u>	Value, child	<u>Value, adult</u> <u>Units</u>	<u>Reference</u>
ATc, averaging time (carcinogen)	70	70 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-carcinogen)	6	20 yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (ingestion)	150	150 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (dermal)	150	100 days/yr	PEA Guidance Manual
EFi, exposure frequency (inhalation)	150	150 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration	6	20 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time	8	8 hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate	200	100 mg/day	HERO HHRA Note No. 1 (DTSC, 2014)
IRa, inhalation rate	10	20 m³/day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight	15	80 kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface area	2,900	6,032 cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
AF, adherance factor	0.2	0.07 mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission factor	1.360E+09	1.360E+09 m ³ /kg	HERO HHRA Note No. 1 (DTSC, 2014)
DEA Cuidanas Manual - Dualinsinam, End.		and the second s	(DTCC 1

PEA Guidance Manual = Preliminary Endangermant Assessment Guidance Manual (DTSC, June 1999)

Human-Exposure-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil (OEHHA, November 2004, revised January 2005)

HERO Human Health Risk Assessment Note No. 1, Recommended DTSC Default Exposure Factors for Use in Risk Assessment, DTSC, September 30, 2014.

Table 8a - Summary of Risk/Hazard Calculations for Construction Scenario, COCs, Log Pond Area

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
DRO	UCL	4.0E-03	7.5E-04			0.10	297	2.97E-04	5.17E-01	6.78E-02	5.84E-01			0.00E+00
ORO	UCL	2.0E+00	2.3E+00			0.10	118	1.18E-04	4.10E-04	8.78E-06	4.19E-04			0.00E+00
PCP	Non Detect	5.0E-03		4.0E-01	2.0E-02	0.25		0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
TEQ	Max	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	1.42E-04	1.42E-10	8.25E-01	2.43E-03	8.27E-01	1.07E-06	5.28E-08	1.12E-06
TOTAL									1.34E+00	7.02E-02	1.41E+00	1.07E-06	5.28E-08	1.12E-06

Notes:

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca [mg/m³] = air concentration = Cs [mg/kg] * (PEF [m³/kg])⁻¹

Cs [mg/kg] = soil concentration

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

Max = maximum detected concentration

Non Detect = constituent was not detected

Risk excluding TEQ: 0.0E+00

TEQ Risk: 1.1.E-06

Hazard Index excluding TEQ: 5.8E-01

TEQ Hazard Quotient: 8.3.E-01

<u>Parameter</u> <u>V</u>	<u>/alue, child Val</u>	<u>ue, adult Units </u>	<u>Reference</u>
ATc, averaging time (carcinος		70 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-ca		1 yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (ing		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (der		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFi, exposure frequency (inha		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration		1 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time		8 hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate		330 mg/day	HERO HHRA Note No. 1 (DTSC, 2014)
IRa, inhalation rate		20 m³/day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight		80 kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface are		6,032 cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
AF, adherance factor		0.8 mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission fact		1.0E+06 m ³ /kg	HERO HHRA Note No. 1 (DTSC, 2014)
LIEDO Human Haalth Diek Asse	acamant Nata N	la 1 Dagammanda	d DTCC Default Expensive Feature for Healing

HERO Human Health Risk Assessment Note No. 1, Recommended DTSC Default Exposure Factors for Use in Risk Assessment, DTSC, September 30, 2014.

Table 8b - Summary of Risk/Hazard Calculations for Construction Scenario, COCs, Dip Tank and Transfer Pit Area

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
Mercury	UCL	1.6E-04	7.5E-06			0.01	2.32	2.32E-06	4.70E-02	5.02E-01	5.49E-01			0.00E+00
DRO	UCL	4.0E-03	7.5E-04			0.10	10679	1.07E-02	1.86E+01	2.44E+00	2.10E+01			0.00E+00
ORO	UCL	2.0E+00	2.3E+00		-	0.10	122	1.22E-04	4.24E-04	9.08E-06	4.33E-04			0.00E+00
PCP	UCL	5.0E-03		4.0E-01	2.0E-02	0.25	24.4	2.44E-05	6.42E-02		6.42E-02	1.83E-06	1.22E-09	1.84E-06
TEQ	Max	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	7.80E-05	7.80E-11	4.53E-01	1.34E-03	4.54E-01	5.89E-07	2.90E-08	6.18E-07
TOTAL									1.91E+01	2.94E+00	2.21E+01	2.42E-06	3.02E-08	2.45E-06

Notes:

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca [mg/m³] = air concentration = Cs [mg/kg] * (PEF [m³/kg])⁻¹

Cs [mg/kg] = soil concentration

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

TEQ Hazard Quotient: 4.5.E-01 TEQ Risk: 6.2.E-07

Hazard Index excluding TEQ: 2.2E+01

Max = maximum detected concentration
Non Detect = constituent was not detected

Risk excluding TEQ: 1.8E-06

<u>Parameter</u>	Value, child Va	alue, adult <u>Units</u>	<u>Reference</u>
ATc, averaging time (carcinoç		70 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-ca		1 yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (ing		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (der		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFi, exposure frequency (inha		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration		1 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time		8 hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate		330 mg/day	HERO HHRA Note No. 1 (DTSC, 2014)
IRa, inhalation rate		20 m³/day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight		80 kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface are		6,032 cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
AF, adherance factor		0.8 mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission fact		1.0E+06 m ³ /kg	HERO HHRA Note No. 1 (DTSC, 2014)
TIEDO II III III DI LA		N 4 B	IDTOOD (HE E , (H)

HERO Human Health Risk Assessment Note No. 1, Recommended DTSC Default Exposure Factors for Use in Risk Assessment, DTSC, September 30, 2014.

Table 8c - Summary of Risk/Hazard Calculations for Construction Scenario, COCs, Boiler Room Area

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
DRO	UCL	4.0E-03	7.5E-04			0.10	540	5.40E-04	9.39E-01	1.23E-01	1.06E+00			0.00E+00
ORO	UCL	2.0E+00	2.3E+00			0.10	1545	1.55E-03	5.37E-03	1.15E-04	5.49E-03			0.00E+00
PCP	Non Detect	5.0E-03		4.0E-01	2.0E-02	0.25		0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
TEQ	Max	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	9.59E-05	9.59E-11	5.57E-01	1.64E-03	5.59E-01	7.24E-07	3.57E-08	7.60E-07
TOTAL									1.50E+00	1.25E-01	1.63E+00	7.24E-07	3.57E-08	7.60E-07

Notes:

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca [mg/m³] = air concentration = Cs [mg/kg] * (PEF [m³/kg])¹

Cs [mg/kg] = soil concentration

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

Max = maximum detected concentration

Non Detect = constituent was not detected

Risk excluding TEQ: 0.0E+00

TEQ Risk: 7.6.E-07

3/5/2018

Hazard Index excluding TEQ: 1.1E+00

TEQ Hazard Quotient: 5.6.E-01

<u>Parameter</u>	Value, child \	/alue, adult <u>Units</u>	Reference
ATc, averaging time (carcinoς		70 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-ca		1 yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (ing		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (der		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFi, exposure frequency (inha		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration		1 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time		8 hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate		330 mg/day	HERO HHRA Note No. 1 (DTSC, 2014)
IRa, inhalation rate		20 m³/day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight		80 kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface are		6,032 cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
AF, adherance factor		0.8 mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission fact		1.0E+06 m ³ /kg	HERO HHRA Note No. 1 (DTSC, 2014)

HERO Human Health Risk Assessment Note No. 1, Recommended DTSC Default Exposure Factors for Use in Risk Assessment, DTSC, September 30, 2014.

Table 8d - Summary of Risk/Hazard Calculations for Construction Scenario, COCs, Refuse Burner Area

Analyte	EPC Source	RfDo (mg/kg-day)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	Sfi (mg/kg- day) ⁻¹	ABS	Cs (mg/kg)	Ca (mg/m ³)	Hazard _{soil}	Hazard _{air}	Hazard, soil + air	Risk _{soil}	Risk _{air}	Risk, soil + air
DRO	UCL	4.0E-03	7.5E-04			0.10	497	4.97E-04	8.64E-01	1.13E-01	9.78E-01			0.00E+00
ORO	UCL	2.0E+00	2.3E+00			0.10	2226	2.23E-03	7.74E-03	1.66E-04	7.91E-03			0.00E+00
PCP	Non Detect	5.0E-03		4.0E-01	2.0E-02	0.25		0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
TEQ	UCL	7.0E-10	1.0E-08	1.3E+05	1.5E+05	0.03	9.13E-05	9.13E-11	5.30E-01	1.56E-03	5.32E-01	6.89E-07	3.39E-08	7.23E-07
TOTAL									1.40E+00	1.15E-01	1.52E+00	6.89E-07	3.39E-08	7.23E-07

Notes:

ABS = dermal absorption fraction (PEA Guidance Manual, Appendix A, Table 2)

Ca [mg/m³] = air concentration = Cs [mg/kg] * (PEF [m³/kg])⁻¹

Cs [mg/kg] = soil concentration

RfDo = reference dose for chronic oral exposure

RfDi = reference dose for chronic inhalation exposure

Sfo = standard oral slope factor

Sfi = standard inhalation slope factor

UCL = upper confidence limit

Max = maximum detected concentration

Non Detect = constituent was not detected

Risk excluding TEQ: 0.0E+00

TEQ Risk: 7.2.E-07

Hazard Index excluding TEQ: 9.9E-01

TEQ Hazard Quotient: 5.3.E-01

<u>Parameter</u>	Value, child Valu	<u>e, adult</u> <u>Units</u>	Reference
ATc, averaging time (carcinoc		70 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ATnc, averaging time (non-ca		1 yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFs, exposure frequency (ing		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFd, exposure frequency (der		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
EFi, exposure frequency (inha		250 days/yr	HERO HHRA Note No. 1 (DTSC, 2014)
ED, exposure duration		1 yr	HERO HHRA Note No. 1 (DTSC, 2014)
ET, exposure time		8 hr/day	HERO HHRA Note No. 3 (DTSC, 2016)
IRs, soil ingestion rate		330 mg/day	HERO HHRA Note No. 1 (DTSC, 2014)
IRa, inhalation rate		20 m³/day	HERO HHRA Note No. 1 (DTSC, 2014)
BW, body weight		80 kg	HERO HHRA Note No. 1 (DTSC, 2014)
SA, exposed skin surface are		6,032 cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
AF, adherance factor		0.8 mg/cm ²	HERO HHRA Note No. 1 (DTSC, 2014)
PEF, particulate emission fact	′	1.0E+06 m³/kg	HERO HHRA Note No. 1 (DTSC, 2014)
HEDO Human Hoalth Dick Acc	soccmont Noto No	1 Docommondo	d DTSC Default Exposure Eactors for Use in

HERO Human Health Risk Assessment Note No. 1, Recommended DTSC Default Exposure Factors for Use in Risk Assessment, DTSC, September 30, 2014.

Table 9 - Summary of Human Health Risk Assessment, Soil and Air Pathways

								Exposure S	Scenario						
Assessment Area	Constituents	Residei (Unrestri		Indu	strial		nercial loor		nd Adult ational	Adult Red Rur	creational iner		e Child ation	Constructi	on Worker
		Hazard	Risk	Hazard	Risk	Hazard	Risk	Hazard	Risk	Hazard	Risk	Hazard	Risk	Hazard	Risk
	All COCs	4.0	2.9E-05	0.4	7.7E-06	0.2	3.9E-06	1.7	1.2E-05	0.0	6.8E-07	1.5	1.3E-05	1.4	1.1E-06
Log Pond	Excluding TEQ	1.2	0.0E+00	0.1	0.0E+00	0.1	0.0E+00	0.5	0.0E+00	0.0	0.0E+00	0.4	0.0E+00	0.6	0.0E+00
Area	TEQ Only	2.8	2.9E-05	0.2	7.7E-06	0.1	3.9E-06	1.2	1.2E-05	0.0	6.8E-07	1.0	1.3E-05	0.8	1.1E-06
	Key COCs	DRO,TEQ	TEQ	none	TEQ	none	TEQ	TEQ	TEQ	none	none	TEQ	TEQ	TEQ	TEQ
Din Tonk and	All COCs	48	3.8E-05	5.7	1.6E-05	3.2	8.6E-06	19.7	1.7E-05	0.8	1.4E-06	16.8	1.8E-05	22	2.5E-06
Dip Tank and Transfer Pit	Excluding TEQ	46	2.3E-05	5.6	1.2E-05	3.2	6.4E-06	19.0	1.0E-05	0.8	1.0E-06	16.2	1.1E-05	22	1.8E-06
Area	TEQ Only	1.5	1.6E-05	0.1	4.2E-06	0.1	2.2E-06	0.7	6.8E-06	0.0	3.7E-07	0.6	7.3E-06	0.5	6.2E-07
700	Key COCs	Hg,DRO,TEQ	PCP,TEQ	DRO	PCP,TEQ	DRO	PCP,TEQ	DRO	PCP,TEQ	none	none	DRO	PCP,TEQ	DRO,TEQ	PCP
	All COCs	4.1	1.9E-05	0.4	5.2E-06	0.2	2.7E-06	1.8	8.3E-06	0.0	4.6E-07	1.5	8.9E-06	1.6	7.6E-07
Boiler Room	Excluding TEQ	2.2	0.0E+00	0.3	0.0E+00	0.1	0.0E+00	1.0	0.0E+00	0.0	0.0E+00	8.0	0.0E+00	1.1	0.0E+00
Area	TEQ Only	1.9	1.9E-05	0.2	5.2E-06	0.1	2.7E-06	0.8	8.3E-06	0.0	3.7E-07	0.7	8.9E-06	0.6	7.6E-07
	Key COCs	DRO,TEQ	TEQ	none	TEQ	none	TEQ	TEQ	TEQ	none	none	TEQ	TEQ	DRO	none
	All COCs	3.9	1.8E-05	0.4	4.9E-06	0.2	2.5E-06	1.7	7.9E-06	0.0	4.4E-07	1.4	8.5E-06	1.5	7.2E-07
Refuse Burner	Excluding TEQ	2.1	0.0E+00	0.2	0.0E+00	0.1	0.0E+00	0.9	0.0E+00	0.0	0.0E+00	0.7	0.0E+00	1.0	0.0E+00
Area	TEQ Only	1.8	1.8E-05	0.2	4.9E-06	0.1	2.5E-06	0.8	7.9E-06	0.0	4.4E-07	0.7	8.5E-06	0.5	7.2E-07
	Key COCs	DRO,TEQ	TEQ	none	TEQ	none	TEQ	TEQ	TEQ	none	none	TEQ	TEQ	DRO	none

Notes:

COC = Constituent of Concern

Hazard = chronic health hazard index. Hazard values in **bold** font exceed one. Risk = excess lifetime cancer risk. Risk values in **bold** font exceed one-per-million.

COCs in **bold red** font are expected to play a key role in remedial action decision making.

Table 10 - Summary of Lead Hazard Assessment, Entire Site

The Landing - Old Mill Section Mount Shasta, California

Rea	sonable Ma	cimum Expos	sure	Maximu	n Detection	
EPC (mg/kg)	EPC Source	Estimate of	rcentile Blood Lead I/dl)	Maximum Detected Concentration		rcentile Blood Lead /dl)
(mg/kg)	Source	Non-Pica Child	Adult Worker	(mg/kg)	Non-Pica Child	Adult Worker
17.4	UCL	0.2	0.0	70.3	0.9	0.1

Notes:

EPC = exposure point concentration

UCL = upper confidence limit on the arithmetic mean

ug/L = micrograms per decileter

Lead hazards are assessed using the Lead Risk Assessment Spreadsheet Version 8 (LeadSpread 8;

DTSC, 2011) for child exposure, and the Modified USEPA Adult Lead Model (Modified ALM; DTSC,

2011) for adult exposure.

Table 11 - Summary of Risk/Hazard Calculations for Residential Groundwater Use, Wells OM-2 through OM-5

The Landing - Old Mill Section

Mount Shasta, California

Analyte	EPC Source	RfDo (mg/kg-day)	RfCi (mg/m3)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	IUR (ug/m³) ⁻¹	Kp (cm/hr)	Cw (mg/L)	Hazard, water	Risk, water
Mercury	Max	1.6E-04	3.0E-05	7.5E-06			1.0E-03	4.20E-01	6.84E+03	
DRO	Max	4.0E-03	3.0E-03	7.5E-04			6.9E-02	1.70E-01	2.99E+01	
ORO	Max	2.0E+00	8.0E+00	2.3E+00			2.0E-01	1.70E-01	1.82E-02	
PCP	Non Detect	5.0E-03				5.1E-06	1.3E-01		0.00E+00	
TEQ	UCL	7.0E-10	4.0E-08	1.0E-08	4.0E-01	3.8E+01	8.1E-01	5.27E-08	1.78E+01	3.56E-04
TOTAL									6.9E+03	3.6E-04

Notes:

Cw [mg/kg] = water concentration

Kp = dermal permeability coefficient from water

Max = maximum detected concentration

Non Detect = constituent was not detected

RfDo = reference dose for chronic oral exposure

Sfo = standard oral slope factor

UCL = upper confidence limit

<u>Parameter</u>	Value, child	Value, adult	<u>Units</u>	
ATc, averaging time (carcinogen)	70	70 yr		DTSC 2015
ATnc, averaging time (non-carcinogen)	6	20 yr		DTSC 2015
EFs, exposure frequency (ingestion)	350	350 da	ays/yr	DTSC 2015
EFd, exposure frequency (dermal)	350	350 da	ays/yr	DTSC 2015
EFi, exposure frequency (inhalation)	350	350 da	ays/yr	DTSC 2015
ED, exposure duration	6	20 yr		DTSC 2015
ET, exposure time, bathing	0.54	0.71 hr	/day	DTSC 2015
BW, body weight	15	80 kg	l	DTSC 2015
SA, exposed skin surface area	20,900	6,378 cn	n^2	DTSC 2015

DTSC 2015 = Preliminary Endangerment Assessment Guidance Manual

Table 12 - Summary of Risk/Hazard Calculations for Residential Groundwater Use, Upgradient Well OM-1

The Landing - Old Mill Section

Mount Shasta, California

Analyte	EPC Source	RfDo (mg/kg-day)	RfCi (mg/m3)	RfDi (mg/kg-day)	Sfo (mg/kg- day) ⁻¹	IUR (ug/m³) ⁻¹	Kp (cm/hr)	Cw (mg/L)	Hazard, water	Risk, water
Mercury	Non Detect	1.6E-04	3.0E-05	7.5E-06			1.0E-03		0.00E+00	
DRO	Max	4.0E-03	3.0E-03	7.5E-04			6.9E-02	7.00E-02	1.23E+01	
ORO	Max	2.0E+00	8.0E+00	2.3E+00			2.0E-01	8.00E-02	8.55E-03	
PCP	Non Detect	5.0E-03				5.1E-06	1.3E-01		0.00E+00	
TEQ	Max	7.0E-10	4.0E-08	1.0E-08	4.0E-01	3.8E+01	8.1E-01	3.48E-07	1.17E+02	2.35E-03
TOTAL									1.3E+02	2.4E-03

Notes:

Cw [mg/kg] = water concentration

Kp = dermal permeability coefficient from water

Max = maximum detected concentration

Non Detect = constituent was not detected

RfDo = reference dose for chronic oral exposure

Sfo = standard oral slope factor

UCL = upper confidence limit

<u>Parameter</u>	Value, child	Value, adult	<u>Units</u>	
ATc, averaging time (carcinogen)	70	70 yr		DTSC 2015
ATnc, averaging time (non-carcinogen)	6	20 yr		DTSC 2015
EFs, exposure frequency (ingestion)	350	350 da	ays/yr	DTSC 2015
EFd, exposure frequency (dermal)	350	350 da	ays/yr	DTSC 2015
EFi, exposure frequency (inhalation)	350	350 da	ays/yr	DTSC 2015
ED, exposure duration	6	20 yr		DTSC 2015
ET, exposure time, bathing	0.54	0.71 hr	/day	DTSC 2015
BW, body weight	15	80 kg	l	DTSC 2015
SA, exposed skin surface area	20,900	6,378 cn	n^2	DTSC 2015

DTSC 2015 = Preliminary Endangerment Assessment Guidance Manual

Table 13a - Ecological Exposure Point Concentrations, Log Pond Area

The Landing - Old Mill Section

Mount Shasta, California

					Site	nvestigation Data			Exposure F	Point Concentr	rations ¹
Constituent	Exposure Medium	Unit	Number of Analyses	Number of Detections	Analysis Method	Minimum Detected Concentration	Maximum Detected Concentration	Mean Detected Concentration	Distribution	EPC Source (UCL or Maximum)	EPC
Lead	soil	mg/kg	na - in back	ground range	EPA 6010B	na	na	na	na	na	na
Mercury	soil	mg/kg	na - in back	ground range	EPA 7471A	na	na	na	na	na	na
DRO	soil	mg/kg	12	12	EPA 8015	18	594	98.7	Nonparametric	UCL	297
ORO	soil	mg/kg	11	11	EPA 8015	35	160	96.6	Normal	UCL	116
PCP	soil	mg/kg	1	0	EPA 8151A	na	na	na	na	na	ND
TEQ	soil	mg/kg	2	2	EPA 1613B	4.11E-05	1.42E-04	9.16E-05	na	Maximum	1.42E-04

Table 13b - Chemicals of Potential Ecological Concern, Lot Pond Area

The Landing - Old Mill Section

Mount Shasta, California

				Back	ground Data ¹			Eco-S	SLs ²		Does the	Does the	Is the
Constituent	Unit	EPC ¹	Min	Max	вту	BTV Source ³	Plants	Soil Inverte- brates	Avian Wildlife	Mam-malian Wildlife	EPC exceed SSL(s)?		constituent considered a COPEC?
Lead	mg/kg	na	1.2	28	28	Upper Range Bkg	120	1700	11	56	yes	no	no
Mercury	mg/kg	na	0.04	0.14	0.14	Upper Range Bkg	NL	NL	NL	NL	no	no	no
DRO	mg/kg	297	na	na	na	na	NL	NL	NL	NL	no	yes	no
ORO	mg/kg	116	na	na	na	na	NL	NL	NL	NL	no	yes	no
PCP	mg/kg	ND	na	na	na	na	5.0	31	2.1	2.8	no	no	no
TEQ	mg/kg	1.42E-04	na	na	na	na	NL	NL	0.022	0.0049	no	yes	no

Notes:

- 1 Statistical evaluation performed using ProUCL 5.0 (USEPA, 2013)
- 2 Ecological screening levels (Eco-SSLs) from USEPA, 2008 (www.epa.gov/ecotox/ecossl/)
- 3 See Section 4.1 for background evaluation.

BTV = background threshold value

EPC = exposure point concentration

mg/kg = milligrams per kilogram soil

na = not available

ND = not detected

ne = not evaluated

NL = not listed

Table 14a - Ecological Exposure Point Concentrations, Dip Tank and Transfer Pit Area

The Landing - Old Mill Section

Mount Shasta, California

					Site I	nvestigation Data			Exposure I	Point Concenti	rations ¹
Constituent	Exposure Medium	Unit	Number of Analyses	Number of Detections	Analysis Method	Minimum Detected Concentration	Maximum Detected Concentration	Mean Detected Concentration	Distribution	EPC Source (UCL or Maximum)	EPC
Lead	soil	mg/kg	22	22	EPA 6010B	2	70	14.1	Nonparametric	UCL	28
Mercury	soil	mg/kg	22	12	EPA 7471A	0.04	8.0	1.1	Nonparametric	UCL	2.32
DRO	soil	mg/kg	32	27	EPA 8015	1.6	47000	1755	Nonparametric	UCL	10679
ORO	soil	mg/kg	31	27	EPA 8015	1.6	520	48.8	Nonparametric	UCL	122
PCP	soil	mg/kg	67	24	EPA 8151A	0.07	150	22.6	Nonparametric	UCL	24.4
TEQ	soil	mg/kg	1	1	EPA 1613B	7.80E-05	7.80E-05	na	na	Maximum	7.80E-05

Table 14b - Chemicals of Potential Ecological Concern, Dip Tank and Transfer Pit Area

The Landing - Old Mill Section

Mount Shasta, California

				Back	kground Data ¹			Eco-SS	SLs ²		Does the	Does the	Is the
Constituent	Unit	EPC ¹	Min	Max	вту	BTV Source ³	Plants	Soil Inverte- brates	Avian Wildlife	Mam-malian Wildlife	EPC exceed SSL(s)?		
Lead	mg/kg	28	1.2	28	28	Upper Range Bkg	120	1700	11	56	yes	no	no
Mercury	mg/kg	2.32	0.04	0.14	0.14	Upper Range Bkg	NL	NL	NL	NL	no	yes	yes
DRO	mg/kg	10679	na	na	na	na	NL	NL	NL	NL	no	yes	no
ORO	mg/kg	122	na	na	na	na	NL	NL	NL	NL	no	yes	no
PCP	mg/kg	24.4	na	na	na	na	5.0	31	2.1	2.8	yes	yes	yes
TEQ	mg/kg	7.80E-05	na	na	na	na	NL	NL	0.022	0.0049	no	yes	no

Notes:

- 1 Statistical evaluation performed using ProUCL 5.0 (USEPA, 2013)
- 2 Ecological screening levels (Eco-SSLs) from USEPA, 2008 (www.epa.gov/ecotox/ecossl/)
- 3 See Section 4.1 for background evaluation.

BTV = background threshold value

EPC = exposure point concentration

mg/kg = milligrams per kilogram soil

na = not available

ND = not detected

ne = not evaluated

NL = not listed

Table 15a - Ecological Exposure Point Concentrations, Boiler Room Area

The Landing - Old Mill Section

Mount Shasta, California

					Site	nvestigation Data			Exposure	Point Concentr	rations ¹
Constituent	Exposure Medium	Unit	Number of Analyses	Number of Detections	Analysis Method	Minimum Detected Concentration	Maximum Detected Concentration	Mean Detected Concentration	Distribution	EPC Source (UCL or Maximum)	EPC
Lead	soil	mg/kg	na - in back	ground range	EPA 6010B	na	na	na	na	na	na
Mercury	soil	mg/kg	na - in back	ground range	EPA 7471A	na	na	na	na	na	na
DRO	soil	mg/kg	46	46	EPA 8015	3.8	5000	373	Gamma	UCL	540
ORO	soil	mg/kg	45	45	EPA 8015	3.1	14000	1036	Gamma	UCL	1545
PCP	soil	mg/kg	1	0	EPA 8151A	ND	ND	ND	na	na	ND
TEQ	soil	mg/kg	3	3	EPA 1613B	5.14E-05	9.59E-05	6.91E-05	na	Maximum	9.59E-05

Table 15b - Chemicals of Potential Ecological Concern, Boiler Room Area

The Landing - Old Mill Section

Mount Shasta, California

				Back	ground Data ¹			Eco-S	SLs ²		Does the	Does the	Is the
Constituent	Unit	EPC ¹	Min	Max	вту	BTV Source ³	Plants	Soil Inverte- brates	Avian Wildlife	Mam-malian Wildlife	EPC exceed SSL(s)?		constituent considered a COPEC?
Lead	mg/kg	na	1.2	28	28	Upper Range Bkg	120	1700	11	56	yes	no	no
Mercury	mg/kg	na	0.04	0.14	0.14	Upper Range Bkg	NL	NL	NL	NL	no	no	no
DRO	mg/kg	540	na	na	na	na	NL	NL	NL	NL	no	yes	no
ORO	mg/kg	1545	na	na	na	na	NL	NL	NL	NL	no	yes	no
PCP	mg/kg	ND	na	na	na	na	5.0	31	2.1	2.8	no	no	no
TEQ	mg/kg	9.59E-05	na	na	na	na	NL	NL	0.022	0.0049	no	yes	no

Notes:

- 1 Statistical evaluation performed using ProUCL 5.0 (USEPA, 2013)
- 2 Ecological screening levels (Eco-SSLs) from USEPA, 2008 (www.epa.gov/ecotox/ecossl/)
- 3 See Section 4.1 for background evaluation.

BTV = background threshold value

EPC = exposure point concentration

mg/kg = milligrams per kilogram soil

na = not available

ND = not detected

ne = not evaluated

NL = not listed

Table 16a - Ecological Exposure Point Concentrations, Refuse Burner Area

The Landing - Old Mill Section

Mount Shasta, California

					Exposure Point Concentrations ¹						
Constituent	Exposure Medium	Unit	Number of Analyses	Number of Detections	Analysis Method	Minimum Detected Concentration	Maximum Detected Concentration	Mean Detected Concentration	Distribution	EPC Source (UCL or Maximum)	EPC
Lead	soil	mg/kg	11	10	EPA 6010B	1.2	33.1	9.1	Aprx. Normal	UCL	13.6
Mercury	soil	mg/kg	na - in back	ground range	EPA 7471A	na	na	na	na	na	na
DRO	soil	mg/kg	20	20	EPA 8015	8.1	1300	362	Aprx. Normal	UCL	497
ORO	soil	mg/kg	20	20	EPA 8015	13	4600	1167.0	Gamma	UCL	2226
PCP	soil	mg/kg	0	0	EPA 8151A	na	na	na	na	na	na
TEQ	soil	mg/kg	34	34	EPA 1613B	5.90E-07	2.01E-04	6.42E-05	Gamma	UCL	9.13E-05

Table 16b - Chemicals of Potential Ecological Concern, Refuse Burner Area

The Landing - Old Mill Section

Mount Shasta, California

				Back	ground Data ¹		Eco-SSLs ²				Does the Does the		Is the
Constituent	Unit	EPC ¹	Min	Max	вту	BTV Source ³	Plants	Soil Inverte- brates	Avian Wildlife	Mam-malian Wildlife	EPC exceed SSL(s)?		
Lead	mg/kg	13.6	1.2	28	28	Upper Range Bkg	120	1700	11	56	yes	no	no
Mercury	mg/kg	na	0.04	0.14	0.14	Upper Range Bkg	NL	NL	NL	NL	no	no	no
DRO	mg/kg	497	na	na	na	na	NL	NL	NL	NL	no	yes	no
ORO	mg/kg	2226	na	na	na	na	NL	NL	NL	NL	no	yes	no
PCP	mg/kg	na	na	na	na	na	5.0	31	2.1	2.8	no	no	no
TEQ	mg/kg	9.13E-05	na	na	na	na	NL	NL	0.022	0.0049	no	yes	no

Notes:

- 1 Statistical evaluation performed using ProUCL 5.0 (USEPA, 2013)
- 2 Ecological screening levels (Eco-SSLs) from USEPA, 2008 (www.epa.gov/ecotox/ecossl/)
- 3 See Section 4.1 for background evaluation.

BTV = background threshold value

EPC = exposure point concentration

mg/kg = milligrams per kilogram soil

na = not available

ND = not detected

ne = not evaluated

NL = not listed

LEAD RISK ASSESSMENT SPREADSHEET 8 CALIFORNIA DEPARTMENT OF TOXIC SUBSTANCES CONTROL

Click here for ABBREVIATED INSTRUCTIONS FOR LEADSPREAD 8

INPUT	
MEDIUM	LEVEL
Lead in Soil/Dust (ug/g)	70.3
Respirable Dust (ug/m³)	1.5

EXPOSURE PARAMETERS						
	units	children				
Days per week	days/wk	7				
Geometric Standard Deviation		1.6				
Blood lead level of concern (ug/dl)		1				
Skin area, residential	cm ²	2900				
Soil adherence	ug/cm ²	200				
Dermal uptake constant	(ug/dl)/(ug/day)	0.0001				
Soil ingestion	mg/day	100				
Soil ingestion, pica	mg/day	200				
Ingestion constant	(ug/dl)/(ug/day)	0.16				
Bioavailability	unitless	0.44				
Breathing rate	m³/day	6.8				
Inhalation constant	(ug/dl)/(ug/day)	0.192				

OUTPUT									
Percentile Estimate of Blood Pb (ug/dl									
	50th	90th	95th	98th	99th	(ug/g)			
BLOOD Pb, CHILD	0.5	0.9	1.1	1.3	1.5	77			
BLOOD Pb, PICA CHILD	1.0	1.8	2.1	2.6	3.0	39			

PATHWAYS											
CHILDREN		typical		with pica							
	Pathw	ay cont	ribution	Pathw	ay cont	ribution					
Pathway	PEF	ug/dl	percent	PEF	ug/dl	percent					
Soil Contact	5.8E-5	0.00	1%		0.00	0%					
Soil Ingestion	7.0E-3	0.49	99%	1.4E-2	0.99	100%					
Inhalation	2.0E-6	0.00	0%		0.00	0%					

Entire Site
Maximum Detection

Click here for REFERENCES

LEAD RISK ASSESSMENT SPREADSHEET 8 CALIFORNIA DEPARTMENT OF TOXIC SUBSTANCES CONTROL

Click here for ABBREVIATED INSTRUCTIONS FOR LEADSPREAD 8

INPUT	
MEDIUM	LEVEL
Lead in Soil/Dust (ug/g)	17.4
Respirable Dust (ug/m³)	1.5

EXPOSURE PARAMETERS						
	units	children				
Days per week	days/wk	7				
Geometric Standard Deviation		1.6				
Blood lead level of concern (ug/dl)		1				
Skin area, residential	cm ²	2900				
Soil adherence	ug/cm ²	200				
Dermal uptake constant	(ug/dl)/(ug/day)	0.0001				
Soil ingestion	mg/day	100				
Soil ingestion, pica	mg/day	200				
Ingestion constant	(ug/dl)/(ug/day)	0.16				
Bioavailability	unitless	0.44				
Breathing rate	m³/day	6.8				
Inhalation constant	(ug/dl)/(ug/day)	0.192				

OUTPUT										
Percentile Estimate of Blood Pb (ug/dl										
	50th	90th	95th	98th	99th	(ug/g)				
BLOOD Pb, CHILD	0.1	0.2	0.3	0.3	0.4	77				
BLOOD Pb, PICA CHILD	0.2	0.4	0.5	0.6	0.7	39				

PATHWAYS											
CHILDREN		typical		with pica							
	Pathw	ay cont	ribution	Pathw	ay cont	ribution					
Pathway	PEF	ug/dl	percent	PEF	ug/dl	percent					
Soil Contact	5.8E-5	0.00	1%		0.00	0%					
Soil Ingestion	7.0E-3	0.12	99%	1.4E-2	0.24	100%					
Inhalation	2.0E-6	0.00	0%		0.00	0%					

Entire Site
Resonable maximum exposure (95% UCL)

Click here for REFERENCES

MODIFIED VERSION OF USEPA ADULT LEAD MODEL

CALCULATIONS OF BLOOD LEAD CONCENTRATIONS (PbBs) AND PRELMIINARY REMEDIATION GOAL (PRG)

EDIT RED CELL

Variable	Description of Variable	Units	
PbS	Soil lead concentration	ug/g or ppm	70.3
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
GSD _i	Geometric standard deviation PbB		1.8
PbB ₀	Baseline PbB	ug/dL	0.0
IR_S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050
AF _{S, D}	Absorption fraction (same for soil and dust)		0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	250
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	0.1
PbB _{fetal, 0.90}	90th percentile PbB among fetuses of adult workers	ug/dL	0.2
PbB _t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	1.0
$P(PbB_{fetal} > PbB_{t})$	Probability that fetal PbB > PbB _t , assuming lognormal distribution	%	0.0%

PRG90 318 Entire Site

Maximum detected concentration

Click here for REFERENCES

MODIFIED VERSION OF USEPA ADULT LEAD MODEL

CALCULATIONS OF BLOOD LEAD CONCENTRATIONS (PbBs) AND PRELMIINARY REMEDIATION GOAL (PRG)

EDIT RED CELL

Variable	Description of Variable	Units	
PbS	Soil lead concentration	ug/g or ppm	17.4
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
GSD _i	Geometric standard deviation PbB		1.8
PbB ₀	Baseline PbB	ug/dL	0.0
IR_s	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050
AF _{S, D}	Absorption fraction (same for soil and dust)		0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	250
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	0.0
PbB _{fetal, 0.90}	90th percentile PbB among fetuses of adult workers	ug/dL	0.1
PbB _t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	1.0
$P(PbB_{fetal} > PbB_{t})$	Probability that fetal PbB > PbB _t , assuming lognormal distribution	%	0.0%

PRG90 318 Entire Site

Reasonable maximum exposure (95% UCL)

Click here for REFERENCES

APPENDIX F

4.7 BIOLOGICAL RESOURCES

This section evaluates the potential biological resource impacts of development of the Roseburg Commerce Park. While the site has been heavily disturbed by human activities, some forested and wetland areas still remain. The forested areas may provide habitat for species of special concern. Wetlands, in addition to providing potential habitat, fall under federal regulation. This section is based on a biological resource study of the area conducted by North State Resources.

4.7.1 SETTING

GENERAL

Roseburg Commerce Park (RCP) is located at the southern end of the City of Mt. Shasta and is bounded by a combination of residential and commercial development, open forested areas, and portions of the I-5/Union Pacific Railroad corridor. The topography of the site consists of mainly flat to gentle slopes within the western portion of the property and moderately steep slopes within the eastern portion. Several intermittent creeks and channels run through the property draining to the west, and a perennial creek traverses the northern end of the site.

The majority of the western portion of the site consists of old landings, roads, building pads and other remnant features from the old mill. An empty mill pond, perennial stream, and several springs/seeps are also located at the northern end of the western portion of the site. As a result of past activities, the majority of this half of the RCP site is very disturbed. Vegetation is very "weedy" and consists of a combination of exotic, invasive, and native plant species considered early seral or colonizing species. Large portions of the western portion of the site is barren of any vegetation.

VEGETATION

Vegetation habitats within the project area include Sierra mixed conifer, montane chaparral, and a fresh emergent wetland/montane riparian complex (Figure 4.7-1). Also found on the project site are barren and urban areas.

Disturbed areas left from the former mill operation occupy the majority of the western portion of the project site (Figure 4.7-2). Vegetation within these areas is variable and consists of a combination of trees, shrubs, and grasses and forbs. Dominant tree species include ponderosa pine (Pinus ponderosa), incense cedar (Calocedrus decurrens), Douglas fir (Pseudotsuga menziesii) and black oak (Quercus kelloggii). Shrubs are found growing in dense to sparse clumps and include green leaf manzanita (Arctostaphylos patula), mountain

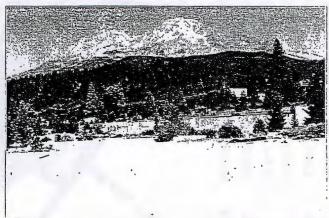


Figure 4.7-2
Disturbed Areas in Western Portion of Site

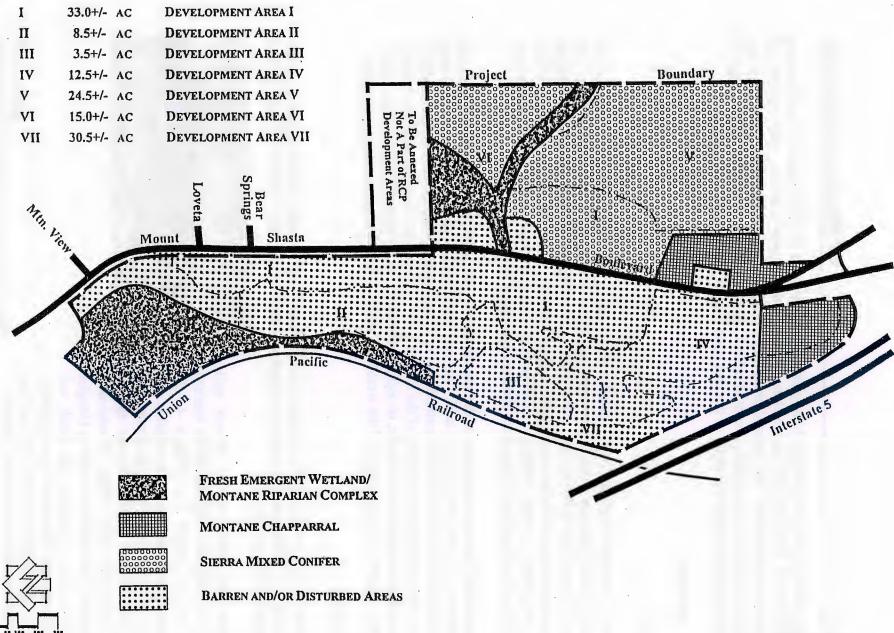


Figure 4.7-1
Habitat Types at RCP Site

City of Mt. Shasta Roseburg Commerce Park Draft Environmental Ir Sact Report whitethorn (Ceanothus cordulatus), tobacco brush (C. velutinus), rabbitbrush (Chrysothamnus nauseosus), bitter cherry (Prunus emarginata), scotch broom (Cytisus scoparius), and chinquapin (Castanopsis sempervirens). Other herbaceous growth occurs throughout the disturbed areas and includes everlasting peavine (Lathyrus latifolius), common mullein (Verbascum sp.), willow-herb (Epilobium sp.), bull thistle (Cirsium sp.) plantain (Plantago sp.), and various other grasses and forbs.

complex of fresh A wetland/montane riparian vegetation occurs at the northern end of the site and is associated with the former mill pond, a perennial stream, and several springs and seeps (See Figure 4.7-3). Vegetation is moderate to dense and consists of a network of emergent wetland and riparian species. Dominant species within this area include sedges (Carex spp.), rushes (Juncus spp.), broad-leaf cattail (Typha latifolia), bracken fern (Pteridium aquilinum), doc (Rumex sp.), and horsetail fern (Equisetum arvense). Riparian vegetation is moderate to dense and includes an overstory

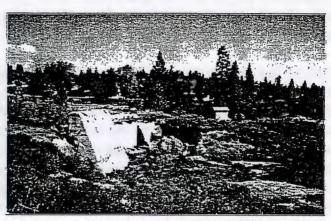


Figure 4.7-3
Former Mill Pond

of white alder (Alnus rhombifolia), willow (Salix spp.), and black cottonwood (Populus trichocarpa). Shrubs include Himalayan blackberry (Rubus discolor), spirea (Spirea douglasii), wood rose (Rosa woodsi), snowberry (Symphoricarpos sp.), and thimbleberry (Rubus parviflorus). The southern portion of the western half is occupied by a dense stand of montane chaparral dominated by green leaf manzanita, mountain whitethorn, bitter cherry, and chinquapin, with occasional black oaks.

A stand of Sierra mixed conifer forest occupies much of the eastern portion of the site. This forest stand consists mainly of pole-sized trees with small patches of more mature trees. The understory consists of a dense shrub layer in the younger tree stands, and is generally open in the patches of more mature forest. Dominant species include ponderosa pine, incense cedar, Douglas fir, white fir (Abies concolor), and sugar pine (Pinus lambertiana). Hardwood species include black oak and dogwood (Cornus nuttallii). The dominant shrubs include green leaf manzanita, bitter cherry, and whitethorn. Snowberry, bracken fern and thimbleberry occupy the forest floor in areas without dense shrub growth. In the southwestern portion of the eastern half of the site, in the vicinity of the vacant gas station and along the disturbed areas adjacent to Mt. Shasta Boulevard, vegetation is comprised primarily of montane chaparral.

SPECIAL STATUS SPECIES

Five special status plant species were found to occur in similar habitats within the general vicinity of the proposed project area. These species include Shasta chaenactis (*Chaenactis suffrutescens*),

pallid bird's beak (Cordylanthus tenuis ssp. pallencens), Oregon fireweed (Epilobium oreganum), Aleppo avens (Geum aleppicum), and northern adder's-tongue (Ophioglossum pusillum). There are no records within the proposed project area for these species. Shasta chaenactis occurs in coniferous forests on sandy or serpentine soils. Oregon fireweed and Aleppo avens occur in meadow or bog/fen habitats. Although historical records exist of its occurrence in the Mt. Shasta area, northern adder's-tongue is considered extirpated in California. Pallid bird's-beak is known from the lower montane conifer forests in the vicinity of Black Butte and areas southwest. Potential habitat may occur within the proposed project area for pallid-bird's beak, particularly in forested areas in the eastern portion of the site. Potential habitat for the four other special status species mentioned does not occur within the project area.

Potential habitat for two amphibian and three avian special status wildlife species was found on the site. The species are the northern red-legged frog (R. aurora aurora), Cascades frog (R. cascadae). northern goshawk (Accipiter gentilis), Cooper's hawk (A. cooperii), and sharp-shinned hawk (A. striatus). Potential habitat for the northern red-legged and Cascades frog is located within the wetland areas found mainly at the northern portion of the project area. Both frog species are currently considered "species of special concern" by the California Department of Fish and Game (CDFG) and "species of concern" (formerly category 2 species) by the United States Fish and Wildlife Service (USFWS). The northern goshawk, and Cooper's and sharp-shinned hawks are all forest raptors. Potential habitat for these species occurs in the forested habitat at the eastern portion of the site. Generally, more extensive forest stands are preferred by these species; however, suitable stands are present within the study area. These raptor species are all currently considered species of special concern by the CDFG. The northern goshawk is also considered a species of concern by the USFWS. Additionally, these raptor species are also afforded special protection under CDFG Code Section 3503.5, which states "It is unlawful to take, possess, or destroy any birds in the orders Falconiformes or Strigiformes (birds of prey) or to take, possess, or destroy the nest or eggs of any such bird".

REGULATORY FRAMEWORK

Federal Endangered Species Act

Under the Federal Endangered Species Act (FESA), the Secretary of the Interior and the Secretary of Commerce jointly have the authority to list a species as threatened or endangered (16 USC 1533[c]). Pursuant to the requirements of FESA, an agency reviewing a proposed project within its jurisdiction must determine whether any federally listed, threatened or protected species may be present in the project area and determine whether the proposed project will have a potentially significant impact on such species. In addition, the agency is required to determine whether the project is likely to jeopardize the continued existence of any species proposed to be listed under FESA or result in the destruction or adverse modification of critical habitat proposed to be designated for such species (16 USC 1536[3], [4]).

The USFWS also publishes a list of candidate species. Species on this list receive "special attention" from federal agencies during environmental review, although they are not protected otherwise under the FESA. The candidate species are taxa for which the United States Fish and Wildlife Service has sufficient biological information to support a proposal to list the species as endangered or threatened.

California Endangered Species Act

Sensitive, endangered, and threatened plants and animals of California are listed pursuant to Section 1904 (Native Plant Protection Act of 1977) and Section 2074.2 and 2077.5 (California Endangered Species Act of 1984) of the California Department of Fish and Game Code. Under the California Endangered Species Act (CESA), the California Department of Fish and Game (CDFG) has the responsibility for maintaining a list of threatened and endangered species. CDFG maintains a list of "candidate species" which are species that are being reviewed for addition to either the endangered or threatened species lists. The CDFG also maintains lists of "species of special concern" which serve as "watch lists." Pursuant to the requirements of CESA, an agency reviewing a proposed project within its jurisdiction must determine whether any State listed endangered or threatened species may be present in the project area and determine whether the proposed project will have a potentially significant impact on such species.

According to California Fish and Game Code Section 86, it is prohibited to "take" species listed as threatened or endangered under the CESA (CF&GC 2080) or as fully protected (CF&GC 3511, 4700, and 5050), which is defined by the following:

- direct mortality;
- permanent or temporary loss of occupied habitat that would result in mortality to or disruption of reproduction of at least one individual of the species; or
- avoidance by individuals of biologically important habitat for substantial periods that would result in mortality or disruption of reproduction to at least one individual of the species.

In addition, the CDFG encourages informal consultation on any proposed project which may impact a candidate species.

Special Status Species

In addition to formal listing under FESA and CESA, species may also receive additional consideration during the CEQA process. Species that may be considered for review are included on a list of "Species of Special Concern," developed by the California Department of Fish and Game. CDFG tracks species in California whose numbers, reproductive success, or habitat may be threatened.

Raptors (birds of prey), migratory birds, and other avian species are protected by a number of state and federal laws. The Federal Migratory Bird Treaty Act (MBTA) prohibits the killing, possessing, or trading of migratory birds except in accordance with regulations prescribed by the Secretary of Interior.

The California Native Plant Society (CNPS) maintains a list of plant species native to California that have low numbers, limited distribution, or are otherwise threatened with extinction. This information is published in the *Inventory of Rare and Endangered Vascular Plants of California*. Potential impacts to populations of CNPS listed plants receive consideration under CEQA review.

Waters of the United States, including Wetlands

The U.S. Army Corps of Engineers (Corps) and the U.S. Environmental Protection Agency (EPA) regulate the discharge of dredge and fill material into wetlands or other "Waters of the United States" under Section 404 of the Clean Water Act (CWA).

Riparian habitat, swale, seasonal wetlands, open water, and ephemeral drainages in a project area may fall under the jurisdiction of the Corps. Urban development that discharges fill into these wetlands is subject to provisions of CWA and may require a permit from the Corps.

The CDFG and the USFWS also consider wetlands sensitive habitats. Wetlands of all types have been reduced in extent and continue to decline in California (Fryer, et al. 1989). CDFG and USFWS consider the degradation of wetland habitat a significant impact requiring mitigation. The Corps and EPA consider fill activity in jurisdictional wetlands a significant impact requiring mitigation.

The Corps has developed a Wetlands Delineation Manual to provide users with guidelines and methods to determine whether an area is a wetland under federal jurisdiction pursuant to Section 404 of the Clean Water Act. The Wetland Delineation Manual prescribes three diagnostic environmental criteria as characteristic of wetland: 1) hydrophytic vegetation; 2) hydric soils; and 3) wetland hydrology. The Manual also states that, except in certain situations, evidence of a minimum of one positive wetland indicator for each parameter must be found in order to make a positive wetland determination.

Hydrophitic Vegetation: An area has hydrophytic vegetation when more than 50 percent of all considered species are wetland plants rather than facultative plants. Facultative plants are, "Plants with a similar likelihood (estimated probability 33% to 67%) of occurring in both wetlands and non wetlands."

<u>Hydric Soil:</u> A hydric soil is a soil that is saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions that favor the growth and regeneration of hydrophytic vegetation. Not all areas having hydric soils will qualify as wetlands. Only when a

hydric soil supports hydrophytic vegetation and the area has indications of wetland hydrology may the soil be referred to as a "wetland" soil.

Wetland Hydrology: Recent research indicates that duration of inundation and/or soil saturation during the growing season is more influential on the plant community than the frequency of inundation/saturation during the growing season. "Areas that are inundated or saturated for a duration of less than 5% of the growing season are not wetlands; many areas inundated or saturated for a duration of 5% to 12.5% during the growing season are not wetlands."

Potential jurisdictional waters of the U.S. occur within the proposed project area in the forms of riparian and emergent wetlands, perennial and intermittent creeks, and constructed channels. The wetland areas are located mainly at the north end of the site and consist of the old mill pond and surrounding areas, and also include areas to the southwest of the pond. Another potential jurisdictional wetland area is located at the base of the hill in the forested eastern portion of the site, where an intermittent creek appears to feed a seep area at the base of the slope (See Figure 4.7-1). The remaining location of potential waters is a small drainage channel at the south end of the site.

California Wetland Definition

Unlike the federal government the California Department of Fish and Game (CDFG) has adopted the Cowardin definition of wetlands.

Wetlands are lands transitional between terrestrial and aquatic systems where the water table is usually at or near the surface of the land or is covered by shallow water. For purposes of this classification, wetlands must have one or more of the following three attributes: (1) at least periodically, the land supports predominantly hydrophytes (at least 50% of the aerial vegetative cover); (2) the substrate is predominantly undrained hydric soil; and (3) the substrate is nonsoil and is saturated with water or covered by shallow water at some time during the growing season of each year (Cowardin et al 1979).

Under normal circumstances, the federal definition of wetlands requires all three wetland identification parameters to be met, whereas the California definition requires the presence of at least one of these parameters. For this reason, identification of wetlands by CDFG consists of areas which are periodically inundated or saturated, or in which at least seasonal dominance by hydrophytes may be documented, or in which hydric soils are present. The CDFG does not normally have direct jurisdiction over wetlands unless they are subject to jurisdiction under Streambed Alteration Agreements or they support State listed endangered species.

Regulation of Activities in Wetlands

The State's authority in regulating activities in wetlands and waters at the site resides primarily with the CDFG and the State Water Resources Control Board (SWRCB). The CDFG provides comment

on Corps permit actions under the Fish and Wildlife Coordination Act. CDFG is also authorized under the Fish and Game Code Sections 1600-1607 to develop mitigation measures and enter into a Stream Alteration Agreement with applicants that propose a project that would obstruct the flow or alter the bed, channel, or bank of a river or stream in which there is a fish or wildlife resource, including intermittent and ephemeral streams. The SWRCB, acting through the Regional Water Quality Control Board (RWQCB), must certify that a Corps permit action meets State water quality objectives (Section 40 1, Clean Water Act).

Riparian Habitat

Riparian habitats have been greatly reduced from their original extent in California (Katibah 1984) and are considered sensitive habitats by the CDFG and the U.S. Fish and Wildlife Service (USFWS). CDFG and USFWS consider removal of riparian vegetation a significant impact that requires mitigation. In addition, riparian vegetation may meet Corps criteria as jurisdictional wetlands.

California Forest Practice Rules

As previously described, a mixed conifer forest stand is found within the eastern portion of the project area. Planned development in this area may be subject to the California Forest Practice Rules governed by the State Board of Forestry and administered by the California Department of Forestry and Fire Protection. Development that requires removal of trees would require a Timber Harvest Plan prepared by a Registered Professional Forester that would describe the proposed action, impacts of timber harvest, and any proposed mitigation measures.

GENERAL PLAN GOALS AND POLICIES

The following General Plan Goals and Policies are applicable to the proposed project:

Goal OC-1

Conserve lands that support important fisheries or wildlife and botanical habitat.

Policy OC-1.1

Limit development on lands that provide important fisheries or wildlife and botantical habitat to agriculture and rural density residential.

Policy OC-1.2

Encourage public-private programs to conserve wildlife and botantical habitat.

Policy OC-1.3

Require flexibility in development standards to balance both private property rights with the need to conserve wildlife and botanical habitat.

Goal OC-2

Protect riparian habitat along streams in the Planning Area.

Policy OC-2.1

Require erosion control protection as a part of grading and development plans.

Goal OC-3

Conserve wetlands areas.

Policy OC-3.1

Work to satisfy state and national wetlands policy.

Policy OC-3.2

Allow property owners of lands with wetlands to design projects to avoid or mitigate wetlands impacts.

4.7.2 IMPACTS AND MITIGATION MEASURES

SIGNIFICANCE CRITERIA

Biological resource impacts may be considered significant if implementation of the project will result in one or more of the following:

- 1) Reduction in number or restriction in the range of a rare, threatened, or endangered plant or animal; or substantially affect a rare, threatened, or endangered species of animal or plant or the habitat of the species; or violate the California Fish and Game Code;
- 2) Substantial interference with the movement of any resident or migratory fish or wildlife species;
- 3) Substantial reduction in the habitat of a fish or wildlife species;
- 4) Threatened elimination of a plant or animal community; or
- 5) Loss of jurisdictional waters of the U.S., including wetlands.

METHODOLOGY

Information for this section came from a biological resource study conducted by North State Resources. The study was prepared using the following methods:

- The most current lists of special status plant and wildlife species were reviewed to confirm the present status of these species (CDFG 1994, 1996, 1997,1998; Federal Register 1996; USFWS 1995, 1996a, 1996b, 1996c).
- Searches and queries of three databases were conducted to assist in determination of
 potential special status floral or faunal species presence. These three databases
 included California Department of Fish and Game Natural Diversity Database
 (CNDDB), California Native Plant Society Electronic Inventory (Skinner and Pavlik
 1994), and the CDFG Wildlife Habitat Relationships System (5.3 version) (Airola
 1988).
- The project area was traversed on foot to characterize vegetation habitats and document features that may be considered potential habitat for special status floral and faunal species. Vegetation was classified using the classification developed for use with the WHR system (Mayer and Laudenslayer 1988). Wildlife species were identified by direct observation, by identification of vocalizations, or by observations of various animal sign. Also evaluated during the survey were features or areas for use in the Opportunities and Constraints Analysis, and a review to determine the presence and extent of potential federal jurisdictional waters, including wetlands.

PROJECT IMPACTS

Impact

4.7.1 Development Area I-subareas H, I, and J, and Development Area V and VI are considered areas with potential habitat for special-status species. [PSM]

Development Areas V and VI and the eastern portion of Development Area I, subareas H, I, and J (See Figure 3-4) contain forest stands that are potential habitat for raptors (birds of prey), including the northern goshawk, Cooper's hawk, and the sharp-shinned hawk. All of these species are species of special concern; raptor nesting sites are protected under Fish and Game Code, Section 3503.5.

In addition, this portion of the project site may be potential habitat for pallid bird's beak, a special status plant species. Pallid bird's-beak, is known to occur in the lower montane conifer forests.

This impact is considered potentially significant and subject to mitigation.

Mitigation

MM 4.7.1a Prior to the issuance of a grading permit for activities in Development Area I subareas H, I, J and Development Areas V and VI, a detailed wildlife and plant survey shall be conducted to determine the presence or absence of special status species in areas with potential habitat. Surveys should be conducted using the

methods prescribed by the CDFG (1984). Results of the surveys shall be submitted to CDFG, USFWS, and the City prior to the issuance of grading permits for these areas. If no sensitive species are located on-site, no further mitigation is necessary. If listed species are located on the property, the applicant and City shall enter into informal consultation with CDFG and USFWS and begin preparation of a Biological Assessment or Habitat Conservation Plan, as applicable.

The precise mitigation/compensation for direct and indirect impacts to sensitive species will depend on agency consultation and agreements. The project applicant shall implement all measures identified by the CDFG and USFWS to protected and mitigate impacts to listed and other special status species.

Significance After Mitigation

Project impacts would be less than significant following the prescribed mitigation measure if no special status species are found during special status species surveys. If listed species are found, the implementation of a Habitat Conservation Plan or appropriate document could reduce this impact to a less than significant level. Additional mitigation requirements may be necessary and should be developed with the CDFG and USFWS to bring impacts to less than significant levels.

Impact

4.7.2 The RCP site may contain potential jurisdictional waters of the United States, including wetlands. [PSM]

Development Area VI contains potential jurisdictional waters of the U.S., including wetlands in the south and southwestern boundary of the Development Area that are associated with a drainage and seep area. Also, Development Area VII has a large montane riparian/emergent wetland complex associated with the former mill pond, a perennial stream, and various seeps in the northern and southwestern portion of the Development Area boundary. These areas may contain jurisdictional waters of the U.S., including wetlands.

The DDP has designed the Development Areas to accommodate potential wetland areas. DA VI has been designated primarily for open space and recreational uses with minimal improvements. DA VII has been designated as public land. Permitted uses which could be developed in this Development Area include: a park and associated recreational uses, a wetland restoration and enhancement area, and a natural community creation and enhancement area. However, any proposed activities that may impact jurisdictional waters would require a detailed delineation to determine the extent and specific location(s) of the jurisdictional waters. Following an analysis of impacts from any proposed activity within areas containing jurisdictional waters, permits may be obtained from the Corps. The permits would be issued under the regulatory authority of the Corps and would likely

have terms and conditions attached, which would include, but are not limited to, a mitigation and monitoring plan for all loss of waters of the U.S.

Mitigation

- MM 4.7.2a Prior to the issuance of a grading permit in areas identified as potential wetland locations, the project proponent shall conduct a detailed wetland delineation to determine the extent and specific location(s) of the jurisdictional waters and obtain written verification of the delineation from the Corps. The impact analysis shall include all project alternatives, including avoidance. If necessary, prepare a mitigation and monitoring plan for all loss of waters of the U.S. The mitigation plan should include measures for wetland habitat enhancement and creation, as appropriate for the level of impact, and be developed in coordination with the Corps.
- MM 4.7.2b Prior to any issuance of a grading permit, the project proponent shall obtain and comply with the terms and conditions of the following permits which may be applicable to the project: a federal Section 404 Clean Water Act permit; a state Section 1601 et seq. Streambed Alteration Agreement from the Department of Fish and Game; and a Water Quality Certification (or waiver of certification) from the State Water Resources Quality Control Board.
- MM 4.7.2c Development plans for enhancement of existing wetland habitats that impact waters of the U.S. would require the same delineation, impact analysis, and mitigation and monitoring plan (if necessary) required for direct development impacts.

Significance After Mitigation

Impacts to jurisdictional waters of the U.S., including wetlands, would be reduced to less than significant levels by avoidance, or by implementation of a mitigation and monitoring plan that may include wetland enhancement and/or creation.

CUMULATIVE IMPACTS

Impact

4.7.3

Cumulative development would contribute to the loss of natural undisturbed open space, increase human intrusion and activity levels in proximity to habitat areas, and would remove potential habitat for federally and state listed and other special-status species. [LS]

It is likely that development of the proposed and/or anticipated projects throughout the City would result in significant impacts on vegetation and/or wildlife because they would eliminate habitat for both common and special-status species. However, the proposed project and Draft Development Plan's proposed layout for the Development Areas reduces the site-specific impacts to biological resources to less than significant levels. This would be achieved by retaining potentially sensitive areas, such as DA VI, as primarily open space and designate DA VII to be developed as parkland or recreational use, wetland enhancement areas, or natural community enhancement areas.

Because environmental review would be required as part of all future projects' in the City, mitigation would be developed for site-specific impacts at that time. Therefore, cumulative impacts on biological resources are considered less than significant.

REFERENCES

- Airola, D. A. 1988. Guide to the Wildlife Habitat Relationships System. State of California Resources Agency. Department of Fish and Game. 74 pp.
- California Department of Fish and Game. 1984. Guidelines for Assessing the Effects of Proposed Developments on Rare and Endangered Plants and Plant Communities. State of California. The Resources Agency. Department of Fish and Game. 2 pp.
- California Department of Fish and Game. 1994. Special Animals. State of California. The Resources Agency. Department of Fish and Game, Natural Heritage Division, Natural Diversity Database. August 1994. 28 pp.
- California Department of Fish and Game. 1996. State and Federally Listed Endangered and Threatened Animals of California. State of California. The Resources Agency. Department of Fish and Game, Natural Heritage Division. Natural Diversity Database. January 1998. 11 pp.
- California Department of Fish and Game. 1997. Special Plants List. The Resources Agency. Department of Fish and Game, Natural Heritage Division, Natural Diversity Database. January 1996. 74 pp.
- California Department of Fish and Game. 1998. Endangered, Threatened, and Rare Plants of California. State of California. The Resources Agency. Department of Fish and Game, Natural Heritage Division, Endangered Plant Program. January 1998, Revised November 24, 1997. 14 pp.
- Federal Register. 1996. Endangered and Threatened Wildlife and Plants. 50 CFR Part 17.11 & 17.12. October 31, 1996.

- Mayer, K. E. and William F. Laudenslayer Jr. (editors), 1988. A Guide to Wildlife Habitats of California. California Department of Forestry and Fire Protection. 166 pp.
- Skinner M. W. and B. M. Pavlik, editors. 1994. *Inventory of Rare and Endangered Vascular Plants of California*. California Native Plant Society. CNPS Special Publication No. 1 (5 Edition). 338 pp.
- U.S. Fish and Wildlife Service. 1995. Federally Listed Threatened and Endangered Species in California as of September 30, 1995. 4 pp.
- U.S. Fish and Wildlife Service. 1996a. Northern California Species of Concern as of February 28, 1996. 11 pp.
- U.S. Fish and Wildlife Service. 1996b. Northern California Animal Species of Concern as of February 28, 1996. 4 pp.
- U.S. Fish and Wildlife Service. 1996c. Quick List of Federally Listed, Proposed, and Candidate Animal Species in Northern California as of April 5, 1996. 3 pp.